Hide Menu
Hide Menu   Home   |     About Us   |   Contact   |   Imprint   |   Privacy   |   Sitemap
Hide Menu   Chemistry Index   |   Chemicals   |   Elemente
Hide Menu   Lab Instruments   |  
Hide Menu   Job Vacancies   |  
Hide Menu   Chemistry Forum   |  
Chemistry A - Z
Equipment for Lab and Industry
Chemicals and Compounds
Job Vacancies
Imprint, Contact
Chemistry Forum

 

Amino Acids (Journal)

Current research reports and chronological list of recent articles.




The international scientific journal Amino Acids publishes contributions from all fields of amino acid and protein research: analysis, separation, synthesis, biosynthesis, cross linking amino acids, racemization/enantiomers, modification of amino acids as phosphorylation, methylation, acetylation, glycosylation and nonenzymatic glycosylation, new roles for amino acids in physiology and pathophysiology, biology, amino acid analogues and derivatives, polyamines, radiated amino acids, peptides, stable isotopes and isotopes of amino acids. Applications in medicine, food chemistry, nutrition, gastroenterology, nephrology, neurochemistry, pharmacology, excitatory amino acids are just some of the topics covered.

The publisher is Springer. The copyright and publishing rights of specialized products listed below are in this publishing house. This is also responsible for the content shown.

To search this web page for specific words type "Ctrl" + "F" on your keyboard (Command + "F" on a Mac). Then: type the word you are searching for in the window that pops up!

Additional research articles see Current Chemistry Research Articles. A magazine with similar content (amino acids) is:

 - Journal of Amino Acids (Hindawi).



Amino Acids (Journal) - Abstracts



Imaging the expression of glypican-3 in hepatocellular carcinoma by PET

Abstract

The glypican-3 (GPC3) receptor is overexpressed in hepatocellular carcinoma (HCC) and is a potential diagnostic and therapeutic target. GPC3-targeted molecular imaging will be helpful to differentiate diagnosis and guide therapy. In the present study, we will develop a novel PET probe for imaging the expression of GPC-3. L5 (sequence: RLNVGGTYFLTTRQ), a GPC3 targeting peptide, was labeled with 5-carboxyfluorescein (FAM) and 18F-fluoride. Cell binding tests were performed to identify the binding specificity of FAM-L5 and 18F radiolabeled peptide. MicroPET/CT imaging was used to determine the potential of a novel PET tracer for visualizing HCC tumors with a high expression of GPC3. In vitro binding tests showed that the uptake of FAM-L5 in HepG2 cells (high expression of GPC3) was significantly higher than that of HL-7702 cells (negative expression of GPC3) (mean fluorescent intensity: 14,094¬†¬Ī¬†797 vs. 2765¬†¬Ī¬†314 events, t¬†=¬†32.363, P¬†=¬†0.000). Confocal fluorescent imaging identified that FAM-L5 accumulated where the GPC3 receptor was located. A novel PET tracer (18F-AlF-NODA-MP-6-Aoc-L5) was successfully labeled by chelation chemistry. In vitro cell uptake studies showed that 18F-AlF-NODA-MP-6-Aoc-L5 can bind to HepG2 tumor cells and was stable in PBS and mouse serum stability tests. MicroPET/CT showed that HepG2 tumors could be clearly visualized with a tumor/muscle ratio of 2.46¬†¬Ī¬†0.53. However, the tumor/liver ratio was low (0.93¬†¬Ī¬†0.16) due to the high physiological uptake in the liver. This study demonstrates that FAM and the 18F-labeled L5 peptide can selectively target HCC with a high expression of GPC3 in vitro and in vivo. 18F-AlF-NODA-MP-C6-L5 has the potential to be a GPC3 target tracer but requires some chemical modifications to achieve a high enough tumor/liver ratio for detection of the tumor in the liver.


Datum: 01.02.2018


Fibroblast-like synoviocyte migration is enhanced by IL-17-mediated overexpression of l -type amino acid transporter 1 (LAT1) via the mTOR/4E-BP1 pathway

Abstract

In rheumatoid arthritis (RA), activated synovial fibroblasts have the ability to invade joint cartilage, actively contributing to joint destruction in RA. The mechanisms underlying this cell migration and invasion remain unclear. Our previous results and data from the GEO profile indicate that the l-type amino acid transporter gene, LAT1, is overexpressed in the synovium of RA. To identify its potential role in RA, fibroblast-like synoviocytes (FLS) from patients with RA were used to determine the effects of suppressing the LAT1 genes using RNA interference and the LAT inhibitor, BCH. We found that BCH exposure reduced the phosphorylation of mTOR and its downstream target 4EBP1, radiolabeled leucine uptake, and migration of RA FLS. LAT1 silencing by siRNA presented effects similar to BCH inhibition. Treatment of cells with IL-17 stimulated the expression of LAT1. In contrast, applying an inhibitor of mTOR pathway, temsirolimus, or silencing eIF4E neutralized the stimulation of IL-17 on LAT1. BCH and siLAT1 also resulted in lower IL-17-stimulated leucine uptake and cell migration. These results suggest that the migration of RA FLS is aggravated by IL-17-mediated overexpression of LAT1 via mTOR/4E-BP1 pathway. In conclusion, further investigation is warranted into LAT1 as a potential target for drug therapies aimed at attenuating migration of transformed-appearing fibroblasts and subsequently preventing further erosion of bone and cartilage.


Datum: 01.02.2018


Inverse correlation between maternal plasma asymmetric dimethylarginine (ADMA) and birthweight percentile in women with impaired placental perfusion: circulating ADMA as an NO-independent indicator of fetal growth restriction?

Abstract

l-Arginine (Arg) is the enzymatic precursor of nitric oxide (NO) which has multiple biological functions. Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) are endogenous inhibitors of NO. We hypothesized that the ADMA and SDMA have additional biological functions in pregnancy, beyond NO synthesis, and may play a role in the regulation of birthweight (BW). To investigate this issue, we measured the plasma concentration of ADMA, SDMA, Arg and the NO metabolites nitrite and nitrate, at 23‚Äď25¬†weeks of gestation in women with normal placental function (Group 1) and in women with impaired placental perfusion; 19 of these women had normal outcome (Group 2), 14 had a fetus that was growth restricted (Group 3), and 10 women eventually developed preeclampsia (Group 4). BW percentile was found to inversely correlate with maternal plasma ADMA concentration in Group 3 (r¬†=¬†‚ąí¬†0.872, P¬†<¬†0.001) and in Group 4 (r¬†=¬†‚ąí¬†0.800, P¬†<¬†0.05). But, BW percentile did not correlate with the maternal plasma concentration of Arg, SDMA, nitrate or nitrite. Our results suggest that maternal plasma ADMA concentration is an important indicator of fetal growth restriction in women with impaired placental perfusion independent of NO.


Datum: 01.02.2018


Amplifying and broadening the cytotoxic profile of quercetin in cancer cell lines through bioconjugation

Abstract

Quercetin is a flavonoid presenting cytotoxicity against different cancer cell lines. We hypothesized that its core could serve as a scaffold for generating more potent compounds. A quercetin‚Äďalanine bioconjugate was synthesized, its cellular internalization was monitored through confocal microscopy and its cytotoxic activity was explored against ten different cell lines. The bioconjugate consistently illustrated enhanced cytotoxic activity with respect to the parent compound. A threefold enhancement in its cytotoxicity was revealed for HeLa, A549, MCF-7 and LNCaP cells. In silico studies suggested that quercetin‚Äďalanine possesses enhanced binding affinity to human estrogen receptor alpha corroborating to its activity to MCF-7, overexpressing this receptor. Spectrofluorimetric, calorimetric and in silico studies revealed that quercetin‚Äďalanine binds primarily to Sudlow site I of serum albumin mainly through hydrogen bonding. Through this array of experiments we discovered that the specific compound bears a more refined pharmaceutical profile in contrast to quercetin in terms of cytotoxicity, while at the same time preserves its affinity to serum albumin. Natural products could thus offer a potent scaffold to develop¬†bioconjugates with amplified therapeutic window.


Datum: 01.02.2018


Acrolein toxicity at advanced age: present and future

Abstract

It is thought that tissue damage at advanced age is mainly caused by ROS (reactive oxygen species, O2 ‚ąí, H2O2, and ¬∑OH). However, it was found that acrolein (CH2=CH‚ÄďCHO) is more toxic than ROS, and is mainly produced from spermine (SPM), one of the polyamines, rather than from unsaturated fatty acids. Significant amounts of SPM are present normally as SPM‚Äďribosome complexes, and contribute to protein synthesis. However, SPM was released from ribosomes due to the degradation of ribosomal RNA by ¬∑OH or the binding of Ca2+ to ribosomes, and acrolein was produced from free SPM by polyamine oxidases, particularly by SPM oxidase. Acrolein inactivated several proteins such as GAPDH (glycelaldehyde-3-phosphate dehydrogenase), and also stimulated MMP-9 (matrix metalloproteinase-9) activity. Acrolein-conjugated GAPDH translocated to nucleus, and caused apoptosis like nitrosylated GAPDH. Through acrolein conjugation with several proteins, acrolein causes tissue damage during brain stroke, dementia, renal failure, and primary Sj√∂gren‚Äôs syndrome. Thus, development of acrolein scavengers with less side effects is very important to maintain QOL (quality of life) of elderly people.


Datum: 01.02.2018


d -Proline: Comment to ‚ÄúAn overview on d -amino acids‚ÄĚ

Abstract

An excellent 2017 review in this journal about d-amino acids by Genchi aims for a comprehensive representation of the current state of knowledge. Unfortunately, information about both d-proline and proline racemase is almost entirely missing. In our investigations into d/l-Pro-containing neuropeptides in cicadas, we have performed literature surveys in this context. Proline racemases in bacteria are known since 1957; their function has been studied mostly in prokaryotes and, more recently, proline racemase was identified in the unicellular eukaryotic parasite Trypanosoma cruzi. Published data on d-proline and/or proline racemase in other species are rare or non-existent.


Datum: 01.02.2018


Molecular characterization and bioactivity evaluation of two novel bombinin peptides from the skin secretion of Oriental fire-bellied toad, Bombina orientalis

Abstract

Following the exploration of biochemicals in amphibian defensive skin secretion, great attention has been focused on the novel bioactive peptides with unique molecular structures and complicated features and functions. In this study, the skin secretion of Oriental fire-bellied toad, Bombina orientalis, was acquired to search peptides with therapeutic potential. Using ‚Äúshotgun‚ÄĚ cloning technique, a full-length peptide precursor co-encoding two novel bombinin peptides was cloned from the skin secretion-derived cDNA library of B. orientalis. The deduced peptides were identified as one bombinin-like peptide (BLP) (GIGSAILSAGKSIIKGLAKGLAEHF-NH2) and one bombinin H-type peptide (BH) (IIGPVLGLVGKALGGLL-NH2). The primary structures of both peptides were confirmed through reverse-phase HPLC fractionation and mass spectrometry. Secondary structural prediction revealed Bombinin-BO1 and Bombinin H-BO1 adopted őĪ-helical structural features. In addition, the two peptides exhibited broad-spectrum antimicrobial effect against Gram-positive and Gram-negative bacteria and yeast. Meanwhile, the anticancer activity assay indicated both peptides exerted significant anticancer effects against human hepatoma cell lines tested (Hep G2/SK-HEP-1/Huh7). The peptides reported here for the first time may represent novel lead compounds for the design/development of new therapeutics for human infection and neoplastic disease.


Datum: 01.02.2018


Intestinal amino acid and peptide transporters in broiler are modulated by dietary amino acids and protein

Abstract

This study evaluated the effect of three levels of digestible amino acids (DAA; 100, 107 and 114% of Cobb recommendations) on mRNA abundance of peptide (PepT1) and amino acid (AA) transporters in 480-day-old broilers during prestarter period. Jejunal mRNA levels of the PepT1 and b0,+AT increased as DAA level increased from 100 to 114%. The expression of CAT1 mRNA in the jejunum was higher in birds fed 100% DAA diet. The transport systems B0AT and y+LAT1 were not affected by the dietary treatments. These results demonstrated that dietary content of protein and DAA differentially affected the expression of intestinal peptide and AA transporters to modulate absorption of peptide and AA in broilers.


Datum: 01.02.2018


Oral treatment with a rattlesnake native polypeptide crotamine efficiently inhibits the tumor growth with no potential toxicity for the host animal and with suggestive positive effects on animal metabolic profile

Abstract

The efficacy of crotamine as antitumoral was first demonstrated by daily intraperitoneal (IP) injections of low doses of this toxin in an animal model bearing melanoma tumors. Significant inhibition of tumor growth and increased lifespan of mice bearing tumor was also noticed after 21 consecutive days of this daily IP administration of crotamine. However, due to the limited acceptance of treatments by IP route in clinical conditions, herein, we evaluated the antitumor effect of this native polypeptide employing the oral route. The efficacy of crotamine in inhibiting the melanoma growth in vivo, even after passing through the gastrointestinal tract of the animal, was confirmed here. In addition, biochemical biomarkers and also histopathological analysis showed both the absence of any potential toxic effects in tissues or organs of the animal in which the highest accumulation of crotamine is expected. Interestingly, a reduction of weight gain was observed mainly in animals with tumor treated with crotamine by IP route, but not by oral administration. Albeit, oral administered crotamine was able to significantly decrease the body weight gain of healthy animals without tumor. Taking advantage of this same experimental animal models receiving crotamine by oral route, it was possible to show metabolic changes as the increased capacity of glucose clearance, which was accompanied by a reduction of the total cholesterol, and by increased high-density lipoprotein levels, both observed mainly in the absence of tumor. Triglycerides and low-density lipoprotein were also significantly decreased, but only in the absence of tumor. Taken together, these data suggest a clear trend for metabolic positive effects and mischaracterize unhealthy condition of animals, with or without tumors, treated with crotamine for 21 days. In addition, this study confirmed the efficacy of crotamine administered by oral route as antitumor agent, which besides the additional advantage of administration convenience and decreased risk of toxic effects, allowed the serendipitous observation of several positive metabolic effects on treated animals.


Datum: 01.02.2018


Classification of G-protein coupled receptors based on a rich generation of convolutional neural network, N-gram transformation and multiple sequence alignments

Abstract

Sequence classification is crucial in predicting the function of newly discovered sequences. In recent years, the prediction of the incremental large-scale and diversity of sequences has heavily relied on the involvement of machine-learning algorithms. To improve prediction accuracy, these algorithms must confront the key challenge of extracting valuable features. In this work, we propose a feature-enhanced protein classification approach, considering the rich generation of multiple sequence alignment algorithms, N-gram probabilistic language model and the deep learning technique. The essence behind the proposed method is that if each group of sequences can be represented by one feature sequence, composed of homologous sites, there should be less loss when the sequence is rebuilt, when a more relevant sequence is added to the group. On the basis of this consideration, the prediction becomes whether a query sequence belonging to a group of sequences can be transferred to calculate the probability that the new feature sequence evolves from the original one. The proposed work focuses on the hierarchical classification of G-protein Coupled Receptors (GPCRs), which begins by extracting the feature sequences from the multiple sequence alignment results of the GPCRs sub-subfamilies. The N-gram model is then applied to construct the input vectors. Finally, these vectors are imported into a convolutional neural network to make a prediction. The experimental results elucidate that the proposed method provides significant performance improvements. The classification error rate of the proposed method is reduced by at least 4.67% (family level I) and 5.75% (family Level II), in comparison with the current state-of-the-art methods. The implementation program of the proposed work is freely available at: https://github.com/alanFchina/CNN.


Datum: 01.02.2018


The in vitro, in vivo antifungal activity and the action mode of Jelleine-I against Candida species

Abstract

Recently, the mortality of life-threatening fungal infections increased dramatically. However, there are few antifungals existed. Antimicrobial peptides (AMPs) as promising antifungal candidates have attracted much attention. Here, we present a small antimicrobial peptide Jelleine-I that had potent in vitro and in vivo antifungal activity. Negligible hemolytic activity and in vivo toxicity were observed. Selectivity index (SI) of Jelleine-I is at least 4.6 times higher than amphotericin B. Jelleine-I could increase the production of cellular ROS and bind with genome DNA. This may contribute to its antifungal activity. Furthermore, drug resistance is not induced when the fungal cells were repeatedly treated by Jelleine-I. In conclusion, our results suggest that Jelleine-I may have the potential to be developed as a novel antifungal agent.


Datum: 01.02.2018


Phosphorylation of pyridoxal 5′-phosphate enzymes: an intriguing and neglected topic

Abstract

Pyridoxal 5‚Ä≤-phosphate (PLP)-dependent enzymes catalyze a wide range of reactions of amino acids and amines, with the exception of glycogen phosphorylase which exhibits peculiar both substrate preference and chemical mechanism. They represent about 4% of the gene products in eukaryotic cells. Although structure‚Äďfunction investigations regarding these enzymes are copious, their regulation by post-translational modifications is largely unknown. Protein phosphorylation is the most common post-translational modification fundamental in mediating diverse cellular functions. This review aims at summarizing the current knowledge on regulation of PLP enzymes by phosphorylation. Starting from the paradigmatic PLP-dependent glycogen phosphorylase, the first phosphoprotein discovered, we collect data in literature regarding functional phosphorylation events of eleven PLP enzymes belonging to different fold types and discuss the impact of the modification in affecting their activity and localization as well as the implications on the pathogenesis of diseases in which many of these enzymes are involved. The pivotal question is to correlate the structural consequences of phosphorylation among PLP enzymes of different folds with the functional modifications exerted in terms of activity or conformational changes or others. Although the literature shows that the phosphorylation of PLP enzymes plays important roles in mediating diverse cellular functions, our recapitulation of clue findings in the field makes clear that there is still much to be learnt. Besides mass spectrometry-based proteomic analyses, further biochemical and structural studies on purified native proteins are imperative to fully understand and predict how phosphorylation regulates PLP enzymes and to find the relationship between addition of a phosphate moiety and physiological response.


Datum: 01.02.2018


Targeting VEGF receptors with non-neutralizing cyclopeptides for imaging applications

Abstract

Pharmacological strategies aimed at preventing cancer growth are in most cases paralleled by diagnostic investigations for monitoring and prognosticating therapeutic efficacy. A relevant approach in cancer is the suppression of pathological angiogenesis, which is principally driven by vascular endothelial growth factor (VEGF) or closely related factors and by activation of specific receptors, prevailingly VEGFR1 and VEGFR2, set on the surface of endothelial cells. Monitoring the presence of these receptors in vivo is henceforth a way to predict therapy outcome. We have designed small peptides able to bind and possibly antagonize VEGF ligands by targeting VEGF receptors. Peptide systems have been designed to be small, cyclic and to host triplets of residues known to be essential for VEGF receptors recognition and we named them ‚Äėmini-factors‚Äô. They have been structurally characterized by CD, NMR and molecular dynamics (MD) simulations. Mini-factors do bind with different specificity and affinity VEGF receptors but none blocks receptor activity. Following derivatization with suitable tracers they have been employed as molecular probes for sensing receptors on cell surface without affecting their activity as is usually observed with other binders having neutralizing activity.


Datum: 01.02.2018


Functional roles of agmatinase during the peri-implantation period of pregnancy in sheep

Abstract

This study investigated the effect of agmatine (Agm) in proliferation of ovine trophecdoderm cells (oTr1) as well as the importance of the arginine decarboxylase (ADC) and agmatinase (AGMAT) alternative pathway for synthesis of polyamines in ovine conceptuses during the peri-implantation period of pregnancy. Morpholino antisense oligonucleotides (MAOs) were used to inhibit translation of mRNAs for ODC1 alone, AGMAT alone, and their combination. Rambouillet ewes (N = 50) were assigned randomly to the following treatments on Day 8 of pregnancy: MAO control (n = 10); MAO-ODC1 (n = 8); MAO-ADC (n = 6); MAO-ODC1:MAO-ADC (n = 9); or MAO-ODC1:MAO-AGMAT (n = 9). Ewes were ovario-hysterectomized on Day 16 of pregnancy to obtain uterine flushings, uterine endometrium, and conceptus tissues. Inhibition of translation of both ODC1 and AGMAT resulted in 22% of ewes having morphologically and functionally normal (elongated and healthy) conceptuses designated MAO-ODC1:MAO-AGMAT (A). But, 78% of the MAO-ODC1:MAO-AGMAT ewes had morphologically and functionally abnormal (not elongated and fragmented) conceptuses designated MAO-ODC1:MAO-AGMAT (B). The pregnancy rate was less (22%; P < 0.05) for MAO-ODC1:MAO-AGMAT ewes than for MAO-control (80%), MAO-ODC1 (75%), MAO-ADC (84%), and MAO-ODC1:MAO-ADC (44%) ewes. Moreover, inhibition of translational of both ODC1 and AGMAT mRNAs increased expression of ADC, SLC22A1, SLC22A2, and SLC22A3 mRNAs, as well as abundances of agmatine, putrescine, spermindine, and spermine in conceptus tissue. However, MAO-ODC1:AGMAT(B) ewes had greater abundances of agmatine, putrescine, and spermidine and reduced amounts of spermine in uterine flushes. Thus, in vivo knockdown of translation of ODC1 and AGMAT mRNAs increased expression of genes for the synthesis and transport of polyamines in ovine conceptuses during the peri-implantation period of pregnancy.


Datum: 01.02.2018


Glycine enhances expression of adiponectin and IL-10 in 3T3-L1 adipocytes without affecting adipogenesis and lipolysis

Abstract

Glycine supplementation has been reported to enhance white-fat loss and improve sensitivity to insulin in animals with obesity or type 2 diabetes. However, the underlying mechanisms responsible for the beneficial effects of glycine remain largely unknown. The purpose of this study was to test the hypothesis that glycine regulates adipocyte differentiation, adipogenesis, and lipolysis, therefore, contributing to white-fat reduction. 3T3-L1 pre-adipocytes¬†were induced to differentiate into adipocytes in the presence of glycine (0, 0.25, 1.0, and 2.0¬†mmol/L) or resveratrol (50 or 100¬†őľmol/L, served as a positive control) during the differentiation process. Hela and HepG2 cells cultured with oleic acid to induce lipid accumulation in the presence of glycine (0, 1.0, and 2.0¬†mmol/L) or 10¬†őľmol/L isoproterenol (served as a positive control) for 24¬†h. Intracellular lipid accumulation, intracellular triglycerides, lipid droplets‚Äô diameters of mature adipocytes, mRNA, and protein levels of genes involved in the adipogenesis and lipolysis were analyzed. Isobutylxanthine‚Äďdexamethasone‚Äďinsulin (MDI)-induced adipogenesis in 3T3-L1 cells were¬†blocked by resveratrol, but not by glycine, as shown by decreased lipid contents, reduced diameters of lipid droplets, decreased protein abundances for peroxisome proliferator-activated receptor ő≥ (PPARő≥), CCAAT-enhancer-binding protein őĪ (C/EBPőĪ), as well as increased protein abundance of peroxisome proliferator-activated receptor coactivator-1őĪ (PGC-1őĪ), critical transcriptional factors that regulates adipogenesis. However, the mRNA levels of adiponectin and interleukin-10¬†(IL-10), two adipose-derived adipocytokines with anti-inflammatory effects, were greatly enhanced (P¬†<¬†0.05) by 2¬†mmol/L glycine. Compared with non-treated controls, 10¬†őľmol/L isoproterenol significantly decreased (P¬†<¬†0.05) the intracellular lipid and triglyceride contents induced by oleic acid in Hela and HepG2 cells. mRNA level of fatty acid synthase (FASN), a gene involved in fatty acid synthesis, was significantly reduced (P¬†<¬†0.05), while that for ATGL (adipose triglyceride lipase) and HSL (hormone-sensitive lipase), genes involved in lipolysis were significantly enhanced (P¬†<¬†0.05) by isoproterenol. However, oleic acid induced the accumulation of intracellular triglyceride and lipid contents were not affected by glycine. In conclusion, glycine exposure enhanced the mRNA levels of adipose-derived adiponectin and IL-10 without affecting adipogenesis and lipolysis in 3T3-L1¬†adipocytes. These findings provide a possible explanation for the anti-obesity and anti-diabetic effects of glycine that were previously reported in animal models. More studies are needed to uncover the underlying mechanisms responsible for this regulatory effect of glycine on anti-inflammatory adipocytokines expression in both in vitro and in vivo models.


Datum: 22.01.2018


A long non-coding RNA inside the type 2 transglutaminase gene tightly correlates with the expression of its transcriptional variants

Abstract

The long non-coding RNAs (lncRNAs) are matter of intense investigation as potential regulators of gene expression. In the case of the transglutaminase 2 gene (TGM2) the databases of genome sequence indicate location of a lncRNA (LOC107987281) within the first intron. This lncRNA is 1000 bp long, arises from 2 exons and starts few nucleotides 3′ of the first splicing site of translated TGM2. We have analysed correlations between expression of LOC107987281 lncRNA and TGM2 mRNA by real-time PCR in K562 cell line untreated or treated with the anticancer drugs TPA (12-O-tetradecanoylphorbol-13-acetate), Docetaxel and Doxorubicin. In the treated cells the lncRNA increase follows the trend of TGM2 transcript. To validate this finding we used HumanExon1_0ST Affymetrix; chip data were background-adjusted, quantile-normalized and summarized using robust multi-array average analysis implemented in the R package. The probesets recognize sequences inside each exon, near intronic splicing sites and others located in the untranslated regions of TGM2 gene. The analysis of total RNA samples in GEO datasets from K562, HL-60, THP-1 and U937 cell lines, untreated or treated with TPA in replicated experiments confirmed our earlier results. These demonstrate correlation between LOC107987281 and TGM2 mRNA in the cell lines (K562, HL60 and THP-1) where increased levels of TGM2 mRNA are produced. Additional array study on 358 samples of several normal and paired tumor tissues leads to the same conclusions, indicating a correlation between full-length TGM2 mRNA and LOC107987281 lncRNA in relation to the development of several tumors.


Datum: 08.01.2018


Genetically encoded photochemical covalent crosslinking within the Hcp-1 self-assembling bacterial secretion machinery

Abstract

The target protein, Hcp1, was first described as part of the bacterial Type VI secretion system from Pseudomonas aeruginosa. The protein first self-assembles into a hexamer and then the hexamers further stack into a nanotubular structure. Hcp1 monomers were targeted for mutagenesis with two widely used photoactivatable amino acids: para-benzoyl phenylalanine or para-azidophenylalanine. The ability of these amino acids to form covalent adducts within the Hcp1 self-assembled system was investigated. Multiple residues, putatively of equal distance between the monomer‚Äďmonomer interface were targeted. The efficiency of each amino acid to covalently link self-assembled hexamers was determined. The results demonstrate the choice and role of genetically encoded tools applied to complicated biological processes such as self-assembly and also suggested some structural dynamics of the Hcp-1 protein not obvious from crystallographic structures.


Datum: 06.01.2018


Counter-ion effect on antistaphylococcal activity and cytotoxicity of selected antimicrobial peptides

Abstract

In view of an appreciable increase in resistance of Staphylococcus aureus to the conventional antibiotics, it is desired to develop new effective drugs. Antimicrobial peptides (AMPs) seem to be attractive candidates. In general, AMPs samples used for in vitro studies consist of a peptide, counter-ion, and water. The presence of the counter-ion could be significant as it affects peptide secondary structure and biological activity. The purpose of this study was to estimate the impact of counter-ion on antistaphylococcal activity of selected AMPs (CAMEL, citropin 1.1, LL-37, pexiganan, temporin A). To do this, three kinds of salts were prepared, namely, acetates, hydrochlorides, and trifluoroacetates. In addition, the hemolytic activity against human red blood cells (hRBCs) and cytotoxicity (HaCaT) were determined. The results indicate that there is a substantial difference between different salts, but the pattern is not consistent for the peptides. In general, the antistaphylococcal activity decreased in the order: CAMEL¬†>¬†temporin A¬†>¬†pexiganan¬†>¬†citropin 1.1¬†‚ČꬆLL-37. The highest selectivity indexes were determined for CAMEL hydrochloride, pexiganan acetate, and temporin A trifluoroacetate. This study shows how important is to take into account the kind of counter-ions when designing novel peptide-based antimicrobials.


Datum: 06.01.2018


Evaluation of peptides release using a natural rubber latex biomembrane as a carrier

Abstract

The biomembrane natural (NRL‚ÄĒNatural Rubber Latex), manipulated from the latex obtained from the rubber tree Hevea brasiliensis, has shown great potential for application in biomedicine and biomaterials. Reflecting the biocompatibility and low bounce rate of this material, NRL has been used as a physical barrier to infectious agents and for the controlled release of drugs and extracts. The aim of the present study was to evaluate the incorporation and release of peptides using a latex biomembrane carrier. After incorporation, the release of material from the membrane was observed using spectrophotometry. Analyses using HPLC and mass spectroscopy did not confirm the release of the antimicrobial peptide [W6]Hylin a1 after 24¬†h. In addition, analysis of the release solution showed new compounds, indicating the degradation of the peptide by enzymes contained in the latex. Additionally, the release of a peptide with a shorter sequence (Ac-WAAAA) was evaluated, and degradation was not observed. These results showed that the use of NRL as solid matrices as delivery systems of peptide are sequence dependent and could to be evaluated for each sequence.


Datum: 05.01.2018


Big shoes to fill


Datum: 01.01.2018


 


Category: Current Chemistry Research

Last update: 04 January 2018.






© 1996 - 2018 Internetchemistry














I agree!

This site uses cookies. By using this website, you agree to the use of cookies! Learn more ...