Journal of Coatings Technology and Research

Current research reports and chronological list of recent articles.


The international scientific Journal of Coatings Technology and Research - JCTR - is a forum for the exchange of original research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including, but not limited to, paints, inks and related coatings and their raw materials.

The publisher is Springer. The copyright and publishing rights of specialized products listed below are in this publishing house. This is also responsible for the content shown.

To search this web page for specific words type "Ctrl" + "F" on your keyboard (Command + "F" on a Mac). Then: type the word you are searching for in the window that pops up!

Additional research articles see Current Chemistry Research Articles.



Journal of Coatings Technology and Research - Abstracts



Enhanced corrosion resistance and mechanical properties of nanostructured graphene-polymer composite coating on copper by electrophoretic deposition

Abstract

Composite coating of reduced graphene oxide (RGO) and poly (4-vinylpyridine-co-butyl methacrylate) (PVPBM) on copper was produced by electrophoretic deposition (EPD) technique. The structural and morphological characterizations of the RGO-PVPBM coating were carried out using a Raman spectrometer and a field emission scanning electron microscope, respectively. The thermal stability of the coating was analyzed by thermo-gravimetric analysis, and the corrosion resistance properties were examined by potentiodynamic polarization measurements and electrochemical impedance spectroscopy in 3.5% NaCl solution. At optimal EPD conditions of operating voltage of 5 V and total deposition time of 15 min, a uniform crack-free RGO-PVPBM composite coating is obtained. The microscratch experiment has shown an enhancement in the crack propagation resistance of RGO-PVPBM composite coating up to 3.7 times and adhesive strength increased ~2 times compared to PVPBM coating, thereby making it a potential damage tolerance surface coating on Cu substrate. The potentiodynamic measurements clearly show that RGO-PVPBM acts as a protective coating for Cu in 3.5% NaCl solution. The corrosion inhibition efficiency for RGO-PVPBM coating was calculated to be 95.4% which clearly indicates that the tailored RGO-PVPBM composite is an excellent barrier coating to ion diffusion and corrosive electrolyte with considerably enhanced corrosion resistance.


Datum: 20.11.2017


Flexible, hard, and tough biobased polyurethane thermosets from renewable materials: glycerol and 10-undecenoic acid

Abstract

The main theme of this work is to develop 100% biobased low viscous polyols from renewable resources. An epoxide compound (UA-GLY-E) was synthesized through esterification of glycerol and 10-undecenoic acid preceded by peroxidation. For the first time, UA-GLY-E was utilized as a building block in the generation of low viscous polyols and polyurethanes therefrom. The biobased polyols were synthesized by epoxide ring opening of UA-GLY-E with different nucleophiles, namely glycerol, water, and methanol. The advantage of these biobased polyols is their low viscosity and at the same time high functionality. These biobased polyols were further converted into poly(urethane–urea) coatings by reacting with methylene diphenyl diisocyanate. The impact of peripheral structural change in the polyols on the properties of polyols and their polyurethane coatings was studied. Flexible, hard, and tough thermosets have been prepared successfully from the same epoxy compound by altering the peripheral moiety in the polyol structure. Biobased polyurethanes prepared from glycerol and water-based polyols have shown better crosslinking density over the methanol-based polyol. Moreover, these biobased polyurethane films have shown good thermal stability, mechanical strength, and chemical resistance as well.


Datum: 20.11.2017


PAN ultrafiltration membranes grafted with natural amino acids for improving antifouling property

Abstract

In this report, antifouling polyacrylonitrile (PAN) ultrafiltration membranes were prepared from blends of PAN/polyglycidyl methacrylate (PGMA) via phase inversion method followed by the grafting of natural amino acids through epoxy ring-opening reaction. The grafted PAN membranes possessed highly stable hydrophilic surfaces as a result of the grafting of amino acids, which was adequately demonstrated in attenuated total reflectance–Fourier transform infrared spectroscopy (ATR/FTIR), X-ray photoelectron spectroscopy (XPS), and contact angle measurements. The results of tensile strength and scanning electron microscopy (SEM) images further proved that the surface modification had little effect on their mechanical properties, surface, and cross-sectional morphologies. Meanwhile, remarkable resistance against bovine serum albumin (BSA) and lysozyme (Lyz) fouling was observed for the neutral amino acid-based PAN membranes due to the formation of zwitterionic hydration layer on the membrane surface, while PAN membranes grafted with charged amino acids were able to prohibit the approach of like charged proteins with reduced deposition and provide the driving force for oppositely charged protein adsorption. Furthermore, the ultrafiltration and antifouling performance of PAN membranes were investigated by BSA filtration experiments. Compared with the pristine PAN membrane, all the modified PAN membranes exhibited higher pure water flux, better flux recovery ratio, lower rejection, less total permeation resistance, and preferable stability, having potential applications in protein separation and purification.


Datum: 15.11.2017


Synthesis of Ni, N co-doped TiO 2 using microwave-assisted method for sodium lauryl sulfate degradation by photocatalyst

Abstract

A titanium dioxide (TiO2) photocatalyst was modified with nickel (Ni) and nitrogen (N) in titanium tetra-isopropoxide (TTIP) as a precursor through a microwave-assisted method. The Ni and N dopants led to a decrease in the TiO2 band gap and made it able to function with visible light irradiation. The results of X-ray diffraction analysis demonstrated that the crystalline size of Ni–N–TiO2 was 13.275 nm in anatase form with a specific peak in 2θ = 25.32°. Ni–N–TiO2 was analyzed by scanning electron microscopy, which showed the smaller morphology and thin particles, and this was further supported by energy-dispersive X-ray data regarding the elemental composition of Ni and N being 4.50 and 2.39%, respectively. Fourier transform infrared spectroscopy results demonstrated the absorption spectrum in wavenumbers of 1197 and 1149 cm−1, indicating an N–TiO2 bond, a Ti–O bond at 648 cm−1, and an Ni–O bond at 469 cm−1. TiO2 modified by Ni and N exhibited a decrease in the band gap at 1.95 eV, suggesting the Ni and N dopants successfully inserted onto the TiO2 crystalline surface to be visualized with visible light. Photoactivity testing was carried out to degrade sodium lauryl sulfate surfactants under visible irradiation, where the degradation efficiency was 93.75%.


Datum: 14.11.2017


Effect of the drying temperature on sulfonated polyether sulfone nanofiltration membranes prepared by a coating method

Abstract

This study reports on the preparation of a novel sulfonated polyether sulfone nanofiltration membrane via a manual coating method. The as-prepared membrane was modified by changing the drying temperature and utilizing additives. As the drying temperature was increased, the rejection performance of the as-prepared nanofiltration membrane increased, while flux decreased. The nanofiltration membrane dried at 40°C had relatively high permeation flux and good rejection performance for divalent ions and dyes; therefore, it is suitable for dye wastewater treatment. The nanofiltration membrane dried at 50°C had relatively low permeation flux and relatively good rejection performance for inorganic salts. The pore size of the skin layer was reduced as the drying temperature was increased. The average diameters of the as-prepared nanofiltration membranes dried at 40 and 50°C were 5.08 and 1.51 nm, respectively. Due to excellent hydrophilicity and relatively low roughness, the as-prepared nanofiltration membranes dried at 40 and 50°C had superior antipollution characteristics.


Datum: 10.11.2017


Synthesis of waterborne polyurethane–silver nanoparticle antibacterial coating for synthetic leather

Abstract

An antibacterial coating composed of silver nanoparticles and waterborne polyurethane was synthesized for use on synthetic leather. In this study, silver nanoparticles were prepared and used as nanofiller to impart antibacterial property. Silver nanoparticles were synthesized by using poly(vinyl pyrrolidone) as dispersant and sodium borohydride (NaBH4) as reducing agent. Silver nanoparticles were characterized by transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analysis. The optimum dispersant was selected according to the zeta potential of dispersions. Waterborne polyurethane was synthesized by using isophorone diisocyanate, 2-bis(hydroxymethyl)propionic acid, triethylamine, and polytetramethylene ether glycol. Waterborne polyurethane–silver antibacterial coating was obtained by ultrasonic dispersion, and then cast on the surface of synthetic leather. The antibacterial property and coating adhesion were investigated. The results showed silver nanoparticles homogeneously dispersed in waterborne polyurethane and adhesion reaching grade 4. Antibacterial testing showed bacterial reduction of 99.99% for Escherichia coli and 87.5% for Staphylococcus aureus.


Datum: 08.11.2017


Glycolytic depolymerization of PET waste using MP-diol and utilization of recycled product for UV-curable wood coating

Abstract

Polyethylene terephthalate (PET) waste recycling has become a worldwide research interest for industries and academic institutes due its inevitable environmental impact. The main objective of current research work is to target efficient recycling of PET waste from mineral water bottles by the glycolysis method and subsequent use of the recycled product for value-added coating application. In the present study, we report on MP-diol (2-methyl-1,3-propanediol) which is not explored much for the chemical recycling of PET, having a branched aliphatic diol with two primary hydroxyls, for glycolysis reaction. The reaction parameters were optimized for microwave-assisted technique by varying the ratio of raw materials, reaction time, temperature, and power. The reaction parameters were optimized, and the recycled oligomeric product (OPETMPD) was separated, purified, and characterized by chemical and spectroscopic methods. Subsequently, dimethacrylated oligoesters of PET oligomer (UV oligomer) were synthesized by methacrylation of the glycolyzed PET product (OPETMPD). The synthesized UV oligomer was evaluated using chemical and spectroscopic methods. Ultraviolet (UV) radiation-curable formulations were prepared using synthesized UV oligomer and applied on wooden panels. The coatings were cured using UV-curing machine and evaluated for their performance properties. The partial replacement of UV oligomer in UV formulations exhibited comparative coating performance properties with respect to conventional UV formulation.


Datum: 08.11.2017


Mica/polypyrrole (doped) composite containing coatings for the corrosion protection of cold rolled steel

Abstract

Micas/polypyrroles (PPys) doped with molybdate, p-toluene sulfonate, dodecyl benzene sulfonate, and 2-naphthalene sulfonate composite pigments were synthesized by chemical oxidative polymerization and characterized in coatings for corrosion protection on cold rolled steel substrate by various electrochemical techniques. Synthesized composite pigments were characterized for morphology by scanning electron microscopy, which indicated physical formation of PPy on the surface of mica. Chemical composition of the composite pigments was analyzed by X-ray photoelectron spectroscopy which chemically confirmed doped PPy formation on the mica surface. Coatings were formulated at 20% pigment volume concentration (composite pigments or as-received mica pigment) and were applied on cold rolled steel substrate. Coatings were exposed to salt spray test conditions (ASTM B117) for 30 days and were periodically assessed for corrosion with electrochemical impedance spectroscopy (EIS), open circuit potential (OCP), and potentiodynamic polarization. EIS and circuit modeling results demonstrated higher coating resistance (R c) for mica/PPy (doped) composite coatings as compared to as-received mica pigment containing coating after 30 days of salt spray exposure. Lower current density and more positive corrosion potential values were observed for mica/PPy (doped) composite coatings as compared to mica pigment-based coating in potentiodynamic polarization measurements, indicating improved corrosion protection for cold rolled steel substrate. OCP measurements revealed more positive values for mica/PPy (doped) composite coatings as compared to mica pigment-based coating suggesting superior corrosion protection for mica/PPy (doped) composites.


Datum: 08.11.2017


Preparation and characterization of UV-curable urethane acrylate oligomers modified with cycloaliphatic epoxide resin

Abstract

The UV-curable urethane acrylate oligomers modified with cycloaliphatic epoxide resin, including polyether-modified cycloaliphatic polyurethane acrylate (CE-MP-UA) and oleic acid-modified cycloaliphatic polyurethane acrylate (CE-OA-UA), have successfully been synthesized and characterized by 1HNMR and FTIR. The kinetics of the synthesis processes are studied in this paper. The effects of the molecular structure of the oligomers on the properties of cured film, including pencil hardness, impact resistance, adhesion and boiling water resistance, are discussed in detail. The experimental results indicate that the films formed by CE-OA-MP oligomers show good comprehensive performance, especially good adhesion and boiling water resistance due to the numerous hydroxyl groups, flexible segment and alicyclic structure of the oligomers. The results reveal that the alicyclic structure in the oligomer molecular make-up can effectively improve the adhesion of UV-curable coatings.


Datum: 06.11.2017


Preparation and characterization of styrene-acrylic resin encapsulated C.I. Pigment Yellow 17 and charge control agent multicomponent particles

Abstract

Styrene-acrylic resin encapsulated C.I. Pigment Yellow 17 (PY17) and charge control agent (CCA) multicomponent composite particles were prepared by mini-emulsion polymerization. The characterization results of transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and centrifugal sedimentation experiments all verified the encapsulation of PY17 and CCA. The effect of PY17 and CCA dosages on the morphology of multicomponent particles and influence of compound emulsifier dosage on the emulsion stability and the dispersity of latex particles were studied. When the mass fractions of monomers, PY17, CCA, and compound emulsifiers relative to deionized water were 5, 0.4, 0.1, and 0.375%, respectively, the emulsion showed excellent stability; meanwhile, the latex particles had a clear core–shell structure and the best dispersity. The average size of the multicomponent particles changed slightly with the different dosages of PY17, CCA, and compound emulsifiers. Colorimetric analysis of the samples indicated that encapsulation of PY17 may lead to a decrease in yellow value b* but had little effect on its tinctorial strength.


Datum: 03.11.2017


Effect of vanadium additive and phosphating time on anticorrosion, morphology and surface properties of ambient temperature zinc phosphate conversion coatings on mild steel

Abstract

An attempt has been made to investigate the effect of phosphating time and vanadium additive on the anticorrosion and surface properties of ambient temperature zinc phosphate coatings. Zinc phosphate coatings with different phosphating times and vanadium concentrations were applied to low carbon steel samples. A potentiostatic polarization test in 3.5 wt% NaCl solution was carried out to investigate the electrochemical properties of coated samples. Field emission scanning electron microscopy, energy-dispersive spectroscopy, and atomic force microscopy were utilized to evaluate the microstructure, chemistry and roughness of coatings. Surface properties such as wettability, surface tension, and work of adhesion were measured. Results indicate that the sample which was immersed for 30 min in the phosphating bath exhibits the lowest corrosion current density, one tenth of bare steel, due to formation of a compact coating while having a low number of microcracks. Addition of 500 ppm vanadium to the coating in a secondary bath decreases the corrosion rate of zinc phosphate coating remarkably, by almost 80%. Microstructural results reveal that vanadium-rich precipitates are formed and enhance the coating coverage on the steel substrate. Vanadium addition increases the surface roughness, surface free energy, and work of adhesion of the phosphate coating.


Datum: 01.11.2017


Effect of sputtering parameters on the self-cleaning properties of amorphous titanium dioxide thin films

Abstract

The aim of this work was to assess the effect of the direct current magnetron sputtering parameters on the photocatalytic activity and photoinduced wettability of amorphous TiO2 films. TiO2 films were deposited on glass using the direct current magnetron sputtering technique, without heating, at different total working pressures. Qualitative analysis using in situ X-ray photoelectron spectroscopy confirmed the TiO2 stoichiometry of the deposited films. Surface structure was studied as a function of working pressure using scanning electron microscopy. The hydrophilicity of the TiO2 surfaces was investigated macroscopically using measurements of the water contact angle. A threshold working pressure was observed, with a strong dependence on the film thickness. A super hydrophilic surface was observed after less than 1 h of UV irradiation. The photocatalytic activity of the films was evaluated under UV light through the degradation of methylene blue ( \(\lambda_{\hbox{max} } \approx 660\;{\text{nm}}\) ). The effect of UV irradiation on the photocatalytic activity was rapid, strong, and dependent on film thickness and total working pressure. Fifty percent of organic compounds were photodegraded by films with a thickness of 60 nm deposited at 10 mTorr.


Datum: 01.11.2017


Novel partially bio-based fluorinated polyimides from dimer fatty diamine for UV-cured coating

Abstract

A series of novel partially bio-based fluorinated polyimides with double-bond end groups (BGPIs) from 4,4′-(hexafluoroisopropylidene) diphthalic anhydride, 4,4′-(hexafluoroisopropylidene) dianiline, Priamine 1074, 4-aminobenzoic acid, and glycidyl methacrylate were synthesized via a copolycondensation method in m-cresol. The chemical structure and performances of BGPIs were fully characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, gel permeation chromatography, solubility test, X-ray diffraction, and differential scanning calorimetry. It was determined that the prepared BGPIs were in the amorphous phase and readily soluble in conventional aprotic polar solvents. Additionally, the properties of as-prepared UV-cured coatings based on BGPIs were also evaluated by real-time Fourier transform infrared, thermogravimetric analysis, UV–Vis spectroscopy, and so on. Results revealed that all coatings exhibited satisfactory curing, higher adhesion, lower water uptakes, outstanding optical transparency, and fairly favorable thermal stability under a high content of biomass up to 48.9%. Therefore, these bio-based polymers could be considered as a potential sustainable candidate for high-temperature UV-curable coatings in the microelectronic field.


Datum: 01.11.2017


Surface coating performance of TiO 2 nanoparticle-modified veneered panels and their influence on formaldehyde emission

Abstract

The physical and mechanical properties of wood and wood-based panels can be effectively improved by modification with nanoparticles. This paper focuses on effects of modifying veneer with titanium dioxide (TiO2) nanoparticles on the performance of a waterborne coating and formaldehyde emission. Commercial waterborne varnish was used to apply a surface finish on the modified veneered panels. Changes caused by TiO2 nanoparticle treatment that could affect the finishing performance were measured. The results showed slight increases in the weight and contact angle of the veneers treated with TiO2 nanoparticles, whereas the modified veneered panels after surface finishing presented improved hardness at high nanoparticle loadings. Modification of the veneers by nanoparticles had a minor negative influence on the coating glossiness and adhesion due to a blocking effect between the coating film and the modified veneers. Formaldehyde emissions were considerably reduced due to degradation by the TiO2 particles under UV-light irritation.


Datum: 01.11.2017


A facile process for fabrication of environmentally safe superhydrophobic surfaces

Abstract

Superhydrophobic coatings have opened new vistas in the field of self-cleaning surfaces by having improved performance, robustness and preservation of cleaning agents including water. Presently, fluoropolymers are extensively explored and used for this purpose. However, the major drawback accompanying fluoropolymers is formation of environmentally persistent and toxic compounds, viz. PFOA (perfluorooctanoic acid) and PFOS (perfluorooctanesulfonic acid) on their degradation raising concern on their use. In the present study, an effort has been made to develop a facile process by using an environmentally safe material. A simple dip coating technique is reported to fabricate superhydrophobic surface. SiO2 nanoparticles of size 25–30 nm, prepared by sol–gel route, were dip-coated on glass substrate in multilayers followed by coating of a surfactant to achieve homogeneity of SiO2 layers and enhanced binding with subsequent layer of NUVA-2114 [a commercially used fluorotelomer with chemical composition C2F6(CF2CF2) n X]. It was observed that SiO2 nanoparticles and sodium dodecyl sulfate (SDS) surfactant exhibit a synergistic effect on interface stability at optimized SDS concentration. A water contact angle of 152° is achieved. The established method is simple, scalable, environmentally safe and cost-effective.


Datum: 01.11.2017


Sol–gel preparation and characterization of antibacterial and self-cleaning hybrid nanocomposite coatings

Abstract

ZnO–TiO2, SiO2–TiO2, and SiO2–TiO2–ZnO hybrid nanocomposite coatings were synthesized based on sol–gel precursors including tetramethoxysilane (TMOS), 3-glycidoxypropyl trimethoxysilane (GPTMS), tetra(n-butyl orthotitanate) (TBT), and zinc acetate dihydrate. The hybrid network was characterized by FTIR, FESEM, and EDAX techniques. Results indicated that inorganic particles’ size was of nanoorder (20–30 nm), with very uniform distribution and dispersion. Photocatalytic and self-cleaning activities of these coatings were further investigated by degradation of methylene blue in an aqueous solution (20 ppm) at visible light irradiation, indicating photocatalytic performance of the coatings containing ZnO and TiO2 nanoparticles. The antibacterial effect of the coatings was investigated for inhibition and inactivation of cell growth, with the results showing the same antibacterial activity for ZnO–TiO2 and SiO2–TiO2–ZnO coatings against Escherichia coli and Staphylococcus aureus; the activity was, however, higher than that of SiO2–TiO2 hybrid nanocomposite coatings.


Datum: 01.11.2017


Preparation and evaluation of amphiphilic polymer as fouling-release coating in marine environment

Abstract

Polystyrene–polybutadiene–polystyrene (SBS), vinyl fluoride silicone (BD-FT-LSR) and polyethylene glycol were chosen as the reactors to synthesize amphiphilic polymer which was used to prepare a new type of fouling-release coating. To evaluate the fouling-release performance and explore the mechanism of the coating, artificial and real-sea environment tests were carried out in the experiments, respectively. IR and 1H NMR were utilized to characterize the structure of the polymer. The effect of fouling-release agent was explored by considering changes in the parameters of surface contact angle, XPS, elastic modulus, and TEM. Results of real-sea tests show that the new amphiphilic fouling-release coating has a very good antifouling performance and can be re-cleaned after 6 months of testing in the real-sea environment. These can be explained through hydrophilic PEG migrating to the surface to form a comb-type structure which reduces the adhesion strength of fouling organisms that can then be self-cleaned by flow from the surface of coatings.

Graphical Abstract


Datum: 01.11.2017


Polyaniline/g-C 3 N 4 composites as novel media for anticorrosion coatings

Abstract

In this paper, graphitic carbon nitride (g-C3N4) was first proposed for the pioneer application of anticorrosion coatings. Original g-C3N4 was facilely treated using HNO3 and the exfoliated g-C3N4 sheets (E-g-C3N4) were fabricated, and then, polyaniline/E-g-C3N4 composites (PANI/E-g-C3N4) as novel anticorrosive media were synthesized by chemical oxidative polymerization and devoted to the corrosion protection of coatings. The E-g-C3N4 sheets and PANI/E-g-C3N4 composites were characterized by X-ray diffraction, Fourier transform infrared, thermogravimetric analysis, and transmission electron microscopy. The anticorrosion properties of the samples prepared were investigated by electrochemical measurements including Tafel plots, electrochemical impedance spectra, and open-circuit potential. Accelerated corrosion tests of iron panels coated by PANI/E-g-C3N4 were performed in 3.5 wt% NaCl solution. Anticorrosive mechanism of PANI/E-g-C3N4 was discussed in detail. PANI/E-g-C3N4-3 fillers possessed superior corrosion inhibition than individual components on iron coatings, which was due to the synergetic effect of anticorrosion between E-g-C3N4 and PANI.


Datum: 01.11.2017


Preparation of 2,5-bis(methylallyl thioester)-thiadiazole with high refractive index and its coatings

Abstract

New high refractive index monomer of 2,5-bis(methylallyl thioester)-thiadiazole (BMATETDZ) containing thioester and dithiazole was synthesized by a one-step condensation reaction with methyl acryloyl chloride and 2,5-dimercaptothiadiazole (DTD). N–N=(C), C=O, and C–S with high molar refraction groups were introduced into the structure of BMATETDZ. FTIR and 1H NMR were used to characterize the molecular structure of BMATETDZ. The refractive index of BMATETDZ was 1.661. The coatings of poly (2,5-bis(methylallyl thioester)-thiadiazole) (C-PBMATETDZ) on polyethylene terephthalate (PET) film were prepared by photopolymerization under UV irradiation. The C-PBMATETDZ coatings exhibited better comprehensive properties with high refractive index, high hardness, good adhesive force, excellent thermal stability, and high transparency in range of 200–900 nm.

Graphical Abstract


Datum: 01.11.2017


A novel acrylate-PDMS composite latex with controlled phase compatibility prepared by emulsion polymerization

Abstract

In this paper, a series of acrylate-polydimethylsiloxane (PDMS) composite latexes was prepared and studied systematically to find the factors that affect their performances. At first, the modified PDMS was synthesized to react with acrylate monomers and participate in free radical polymerization. Then, the modified PDMS was blended with acrylate monomers, and the acrylate-PDMS composite latexes with different formulas were obtained by emulsion polymerization. Because the blending monomers were constrained in the micelle, the two components were interconnected with each other by a covalent bond and the phase compatibility between the two components could be controlled well. Chemical constitution and the morphology of acrylate-PDMS composite latexes were confirmed by using FTIR spectroscopy, TEM, and SEM measurements, respectively. Thermophysics and heat resistance of the dried coatings based on acrylate-PDMS composite latexes were studied using DSC and TGA tests, respectively. Anticorrosion properties of the cured coatings based on acrylate-PDMS composite latexes were confirmed by potentiodynamic polarization test. With low surface tension, good toughness, excellent weather-proof properties, and good high and low temperature stability, the modified PDMS component can improve the performance of the traditional acrylate latex-based waterborne resin effectively, and the prepared acrylate-PDMS composite latexes can be used in heavy-duty anticorrosion applications.


Datum: 01.11.2017






Information about this site:

Last update: 09.02.2016

The author- or copyrights of the listed Internet pages are held by the respective authors or site operators, who are also responsible for the content of the presentations.

To see your page listed here: Send us an eMail! Condition: Subject-related content on chemistry, biochemistry and comparable academic disciplines!

Topic: Current, research, scientific, coatings, chemistry, technology, recent, journal, list, articles..








(C) 1996 - 2017 Internetchemistry










Current Chemistry Job Vacancies:

[more job vacancies]