Environmental Toxicology

Current research reports and chronological list of recent articles.


The international scientific journal Environmental Toxicology publishes in the areas of toxicity and toxicology of environmental pollutants in air, dust, sediment, soil and water, and natural toxins in the environment.

The publisher is Wiley. The copyright and publishing rights of specialized products listed below are in this publishing house. This is also responsible for the content shown.

To search this web page for specific words type "Ctrl" + "F" on your keyboard (Command + "F" on a Mac). Then: type the word you are searching for in the window that pops up!

Additional research articles see Current Chemistry Research Articles. Magazines with similar content (environmental chemistry):

 - Atmospheric Chemistry.

 - Chemosphere.

 - Ecotoxicology.

 - Environmental Chemistry.

 - Environmental Chemistry Letters.

 - Environmental Monitoring.

 - Environmental Science and Technology.



Environmental Toxicology - Abstracts



Berberine impairs embryonic development in vitro and in vivo through oxidative stress-mediated apoptotic processes

Berberine, an isoquinoline alkaloid isolated from several traditional Chinese herbal medicines, has been shown to suppress growth and induce apoptosis in some tumor cell lines. However, berberine has also been reported to attenuate H2O2-induced oxidative injury and apoptosis. The basis for these ambiguous effects of berberine—triggering or preventing apoptosis—has not been well characterized to date. In the current investigation, we examined whether berberine exerts cytotoxic effects on mouse embryos at the blastocyst stage and affects subsequent embryonic development in vitro and in vivo. Treatment of blastocysts with berberine (2.5-10 μM) induced a significant increase in apoptosis and a corresponding decrease in trophectoderm cell number. Moreover, the implantation success rate of blastocysts pretreated with berberine was lower than that of their control counterparts. Pretreatment with berberine was also associated with increased resorption of postimplantation embryos and decreased fetal weight. In an animal model, intravenous injection of berberine (2, 4, or 6 mg/kg body weight/d) for 4 days resulted in apoptosis of blastocyst cells and early embryonic developmental injury. Berberine-induced injury of mouse blastocysts appeared to be attributable to oxidative stress-triggered intrinsic apoptotic signaling processes that impaired preimplantation and postimplantation embryonic development. Taken together, our results clearly demonstrate that berberine induces apoptosis and retards early preimplantation and postimplantation development of mouse embryos, both in vitro and in vivo.
Datum: 23.11.2017


4β-Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells

Reactive oxygen species (ROS) induction had been previously reported in 4β-hydroxywithanolide (4βHWE)-induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8-oxo-2′deoxyguanosine [8-oxodG]) were detected in 4βHWE-treated oral cancer (Ca9-22) and/or normal (HGF-1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N-acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE-treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine-DNA glycolyase (Fpg)-based comet assay and 8-oxodG-based flow cytometry, the 8-oxodG expressions were higher in 4βHWE-treated oral cancer cells than in oral normal cells. All the 4βHWE-induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS-mediated selective killing of oral cancer cells.
Datum: 22.11.2017


Andrographolide inhibits hypoxia-induced hypoxia-inducible factor 1α and endothelin 1 expression through the heme oxygenase 1/CO/cGMP/MKP-5 pathways in EA.hy926 cells

Andrographolide is a potent anti-inflammatory agent found in Andrographis paniculata. Endothelin 1 (ET-1) is an endothelium-derived vasoconstrictor with pro-inflammatory properties secreted in response to hypoxia. Mitogen-activated protein kinase phosphatase 5 (MKP-5) is a dual-specificity phosphatase that dephosphorylates threonine and tyrosine residues of MAPKs. We showed previously that hypoxia-induced HIF-1α expression and ET-1 secretion are dependent on p38 MAPK in EA.hy926 cells. Here, we investigate what role MKP-5 plays in andrographolide's inhibition of hypoxia-induced expression of HIF-1α and ET-1. Hypoxic conditions were created using the hypoxia-mimetic agent CoCl2. Andrographolide enhanced HO-1 and MKP-5 expression and cellular cGMP content in addition to inhibiting hypoxia-induced ROS generation. Concomitantly, the HO-1 byproduct CO and the cGMP analogue 8-bromoguanosine 3′,5′-cyclic monophosphate (8-Br-cGMP) increased MKP-5 expression, and pretreatment with CO and 8-Br-cGMP inhibited hypoxia-induced HIF-1α and ET-1 expression. Transfection of HO-1 siRNA or pretreatment with the HO-1 inhibitor ZnPP-9 or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a specific inhibitor of soluble guanylate cyclase, reduced andrographolide-induced MKP-5 expression. Moreover, silencing MKP-5 or treatment with the phosphatase inhibitor vanadate abrogated andrographolide's suppressing hypoxia-induced p38 MAPK activation and HIF-1α expression. The inhibition of hypoxia-induced HIF-1α and ET-1 expression by andrographolide is likely associated with HO-1/CO/cGMP/MKP-5 pathways, which is involved in inhibiting hypoxia-induced p38 MAPK activation.
Datum: 22.11.2017


Cantharidic acid induces apoptosis through the p38 MAPK signaling pathway in human hepatocellular carcinoma

Cantharidin analogs exhibit anticancer activities, including apoptosis. However, the molecular mechanisms underlying the effects of cantharidic acid (CA), a cantharidin analog, on apoptosis in hepatocellular carcinoma (HCC) cells are unclear. Thus, in this study, we evaluated the anticancer activities of CA by investigating its ability to trigger apoptosis in SK-Hep-1 cells. Our data demonstrated that CA effectively inhibited the proliferation of SK-Hep-1 cells in a dose-dependent manner. Furthermore, CA effectively triggered cell cycle arrest and induced apoptosis, as determined by flow cytometric analysis. Western blotting revealed that CA significantly activated proapoptotic signaling including caspase-3, −8, and −9 in SK-Hep-1 cells. Moreover, treatment of SK-Hep-1 cells with CA induced the activation of ERK, p38, and c-Jun N-terminal kinase. Moreover, the inhibition of p38 by specific inhibitors abolished CA-induced cell apoptosis. In conclusion, our results indicated that CA induces apoptosis in SK-Hep-1 cells through a p38-mediated apoptotic pathway and could be a new HCC therapeutic agent.
Datum: 21.11.2017


Antitumor and anti-metastatic mechanisms of Rhizoma paridis saponins in Lewis mice

Lung cancer is one of the most common causes of death in the world. Rhizoma paridis saponins (RPS) have been found to show inhibition of pulmonary adenoma in previous research. However, the detailed mechanisms of RPS from a holistic view have not been established. In this study, Lewis pulmonary adenoma mice were successfully established to analyze the pathways involved in RPS intervening tumor formation and progression. As a result, RPS inhibited levels of cytokines or receptors such as VEGFD, VEGFR3, RAGE, IL6R, IL17BR, and CXCL16 which were regarded as the initiators induced tumor cell proliferation, adhesion, angiogenesis, and invasion. Meanwhile, RPS raised the content of SOD and CAT enzymes and thereby inhibited the aberrantly active NF-κB, and phosphorylation of PI3K/Akt and MAPK (including p38, Erk1/2, and JNK) signaling pathways. Soon after, RPS changed mRNA expression of nuclear factors containing NF-κB, HIF-1A, STAT3, and Jun, and consequentially suppressed the expression of angiogenesis, lymphangiogenesis, adhesion, inflammation, and invasion enzymes. In conclusion, this research provided a holistic view to understand the multi-target antitumor mechanisms of RPS which promoted the application of RPS in the future.
Datum: 17.11.2017


Protective effects of coenzyme Q10 nanoparticles on dichlorvos-induced hepatotoxicity and mitochondrial/lysosomal injury

Development of biocompatible antioxidant nanoparticles for xenobiotic-induced liver disease treatment by oral or parenteral administration is of great interest in medicine. In the current study, we demonstrate the protective effects of coenzyme Q10 nanoparticles (CoQ10-NPs) on hepatotoxicity induced by dichlorvos (DDVP) as an organophosphate. Although CoQ10 is an efficient antioxidant, its poor bioavailability has limited the applications of this useful agent. First, CoQ10-NPs were prepared then characterized using dynamic light scattering (DLS) and transmission electron microscopy (TEM). In DDVP-treated and non-treated hepatocytes in the presence of CoQ10-NPs, cell viability, the level of reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial membrane potential (MMP), lysosome membrane integrity, and cellular glutathione (GSH) content were measured. The prepared CoQ10-NPs were mono-dispersed and had narrow size distribution with average diameter of 54 nm. In the in vivo study, we evaluated the enzymes, which are involved in the antioxidant system for maintenance of normal liver function. In comparison to nonparticulate CoQ10, the CoQ10-NPs efficiently decreased the ROS formation, lipid peroxidation and cell death. Also, particulate form of CoQ10 improved MMP, GSH level and lysosome membrane integrity. In the in vivo, study, we revealed that CoQ10-NPs were better hepatoprotective than its nonparticulate form (P < .05). Altogether, we propose that the CoQ10-NPs have potential capability to be used as a therapeutic and prophylactic agent for poisoning that is induced by organophosphate agents, especially in the case of DDVP. Furthermore, these positive remarks make this nanoparticle amenable for the treatment of xenobiotic-induced liver diseases.
Datum: 16.11.2017


Oolong tea prevents cardiomyocyte loss against hypoxia by attenuating p-JNK mediated hypertrophy and enhancing P-IGF1R, p-akt, and p-Badser136 activity and by fortifying NRF2 antioxidation system

Tea, the most widely consumed natural beverage has been associated with reduced mortality risk from cardiovascular disease. Oolong tea is a partially fermented tea containing high levels of catechins, their degree of oxidation varies between 20%-80% causing differences in their active metabolites. In this study we examined the effect of oolong tea extract (OTE) obtained by oxidation at low-temperature for short-time against hypoxic injury and found that oolong tea provides cyto-protective effects by suppressing the JNK mediated hypertrophic effects and by enhancing the innate antioxidant mechanisms in neonatal cardiomyocytes and in H9c2 cells. OTE effectively attenuates 24 h hypoxia-triggered cardiomyocyte loss by suppressing caspase-3-cleavage and apoptosis in a dose-dependent manner. OTE also enhances the IGFIR/p-Akt associated survival-mechanism involving the elevation of p-Badser136 in a dose-dependent manner to aid cellular adaptations against hypoxic challenge. The results show the effects and mechanism of Oolong tea to provide cardio-protective benefits during hypoxic conditions.
Datum: 15.11.2017


Evaluation of hypothalamus-pituitary-thyroid axis function by chronic perchlorate exposure in male rats

Perchlorate is a widespread endocrine disruptor that was previously correlated with increased serum TSH levels and decreased thyroid hormones production both in animals and humans. Even so, the regulation of gene/protein expression in the hypothalamus, pituitary and thyroid by chronic perchlorate exposure was not completely elucidated. Therefore, this study aimed to investigate the underlying mechanisms involved in the disruption of hypothalamus-pituitary-thyroid axis by chronic perchlorate exposure. Male Wistar rats were treated or not with NaClO4 in the drinking water (35 mg/Kg/day) for 60 days. Thereafter, hormone/cytokines serum levels were measured through multiplex assays; genes/proteins expression were investigated by qPCR/Western Blotting and thyroid morphology was evaluated through histological analysis. Serum TSH levels were increased and serum T4/T3 levels were decreased in perchlorate-treated animals. This treatment also altered the thyrotropin-releasing hormone mRNA/protein content in the hypothalamus. Additionally, the expression of both subunits of TSH were increased in the pituitary of perchlorate-treated rats, which also presented significant alterations in the thyroid morphology/gene expression. Furthermore, perchlorate exposure reduced liver Dio1 mRNA expression and increased the content of pro-inflammatory cytokines in the thyroid and the serum. In conclusion, our study adds novel findings about the perchlorate-induced disruption of the hypothalamus-pituitary-thyroid axis gene/protein expression in male rats. The data presented herein also suggest that perchlorate induces thyroid and systemic inflammation through the increased production of cytokines. Taken together, our results suggest that perchlorate contamination should be monitored, especially in the individuals most susceptible to the deleterious effects of reduced levels of thyroid hormones.
Datum: 15.11.2017


Cigarette smoke extract and isoprene resulted in the induction of apoptosis and autophagy in human placenta choriocarcinoma JEG-3 cells

In this study, the effects of cigarette smoke (CS) on the induction of apoptosis via reactive oxygen species (ROS) production and endoplasmic reticulum stress (ER stress) of JEG-3 human choriocarcinoma cells were examined to confirm the relationship between CS and placenta development. Upon TUNEL assay, CS extract (3R4F; 0.3 and 2.1 μM) increased JEG-3 apoptosis. Western blot assay revealed that the protein expressions of p53, Bax, and CCAAT-enhancer-binding protein homologous protein (CHOP) increased, while the levels of Bcl-2 were reduced following CS extract treatment. Moreover, 2′,7′-dichlorofluorescein diacetate (DCFH-DA) assay revealed increased ROS production. Upon 3-(4-5-dimethylthiazol-2-yl)-2.5-dyhphenyltetrazolium bromide (MTT) assay, isoprene (IP), one of ingredients of CS, deceased JEG-3 cell viability (10−11 to 10−6 M). After based on the MTT assay, two IP concentrations of 10−11 and 10−8 M were selected and the protein expressions of cyclin D1, cyclin E1, p21, and p27 decreased in response to IP. Furthermore, IP showed the greatest increase in autophagy at 24 hours and further induction of cell death at 72 hours upon monodansylacadaverine and TUNEL assay. Western blot analysis confirmed the increase in autophagy markers, LC3β and p62, as well as the increase or decrease of apoptosis markers p53, Bax, CHOP, and Bcl-2 in response to its treatments. In addition to confirming increases in ROS through DCFH-DA, we also confirmed the expression of Nrf2, an antioxidant marker, and the expression of Kelch-like ECH-associated protein 1 (KEAP1), which specifically degrades Nrf2, by Western blot. Taken together, these results indicate that CS and IP may inhibit the development of placenta via activation of ROS by inducing apoptosis and autophagy by affecting the expression of KEAP1, which regulates Nrf2 expression.
Datum: 14.11.2017


Fenofibrate induced PPAR alpha expression was attenuated by oestrogen receptor alpha overexpression in Hep3B cells

The physiological regulation of Oestrogen receptor α (ERα) and peroxisome proliferator-activated receptor alpha (PPARα) in Hepatocellular carcinoma (HCC) remains unknown. The present study we first treat the cells with fenofibrate and further investigated the possible mechanisms of 17β-estradiol (E2) and/or ERα on regulating PPARα expression. We also found higher PPARα expression in the tumor area than adjacent areas and subsequently compared PPARα expression in four different hepatic cancer cell lines. Hep3B cells were found to express more PPARα than the other cell lines. Using the PPARα agonist fenofibrate, we found that fenofibrate increased Hep3B cell proliferation efficiency by increasing cell cycle proteins, such as cyclin D1 and PCNA, and inhibiting p27 and caspase 3 expressions. Next, we performed transient transfections and immuno-precipitation studies using the pTRE2/ERα plasmid to evaluate the interaction between ERα and PPARα. ERα interacted directly with PPARα and negatively regulated its function. Moreover, in Tet-on ERα over-expressed Hep3B cells, E2 treatment inhibited PPARα, its downstream gene acyl-CoA oxidase (ACO), cyclin D1 and PCNA expression and further increased p27 and caspase 3 expressions. However, over-expressed ERα plus 17-β-estradiol (10−8 M) reversed the fenofibrate effect and induced apoptosis, which was blocked in ICI/melatonin/fenofibrate-treated cells. This study illustrates that PPARα expression and function were negatively regulated by ERα expression in Hep3B cells.
Datum: 14.11.2017


SIRT1 exhibits antioxidative effects in HT22 cells induced by tert-butyl alcohol

Tertiary butyl alcohol (TBA) is a principal metabolite of methyl tertiary-butyl ether (MTBE), a common pollutant worldwide in the ground or underground water, which is found to produce nervous system damage. Nevertheless, few data regarding the effects of TBA has been reported. Studies indicated that oxidative stress plays a pivotal role in MTBE neurotoxic mechanism. Sirtuin 1 (SIRT1) has been reported to exert a neuroprotective effect on various neurologic diseases via resistance to oxidative stress by deacetylating its substrates. In this study, we examined levels of oxidative stress after exposure to TBA for 6 h in HT22 cells and HT22 cells with SIRT1 silencing (transfected with SIRT1 siRNA) or high expression (preconditioned with agonists SRT1720). We found that TBA activated oxidative stress by increasing generation of intracellular reactive oxygen species (ROS), malondialdehyde (MDA) and Oxidized glutathione (GSSG), and decreasing contents of superoxide dismutase (SOD) and glutathione reductase (GSH). In additional, levels of TBA-induced oxidative stress were aggravated when SIRT1 silenced but alleviated when SIRT1 enhanced. Our study indicated that SIRT1 mitigated oxidative stress induced by TBA.
Datum: 14.11.2017


ISSUE INFORMATION - TOC


Datum: 13.11.2017


Monosodium glutamate suppresses the female reproductive function by impairing the functions of ovary and uterus in rat

The aim of the present study was to examine the effect of monosodium glutamate (MSG) on the functions of ovary and uterus in rat. Virgin female rats of Charles Foster strain (120 gms approximately) were administrated MSG by oral gavage at a dose level of 0.8, 1.6, 2.4 gm/kgBW/day, respectively for 30 and 40 days duration. We observed a significant decrease in the duration of proestrus, estrus and metestrus phases, and increase in the duration of diestrus phase and diestrus index compared to control. We found significant increase in the levels of serum LH, FSH and estradiol in test groups of rat. We also observed significant increase in the number of primary and primordial follicles, increase in the size of graafian follicle, and decrease in the size of corpus luteum. Further, we have seen significant increase in the activities SOD, CAT and GST, decrease in the activities GR and GPx, and decrease MDA level in MSG exposed groups. These results suggest that MSG impairs the functions of the ovary probably by augmenting the release of FSH, LH and estradiol; promoting the follicular maturation and improving the biochemical mechanism for antioxidant defense. We also observed significant potentiation of the force of contraction of uterus in estrus, metestrus and diestrus phases. This result suggests that MSG potentiates the contraction of uterus probably by stimulating the estradiol sensitivity to oxytocin. From the results it is concluded that MSG suppresses the female reproductive function in rat probably by impairing the functions of ovary and uterus.
Datum: 09.11.2017


Glabridin inhibits the activation of myofibroblasts in human fibrotic buccal mucosal fibroblasts through TGF-β/smad signaling

Oral submucous fibrosis (OSF) has been recognized as one of the oral potentially malignant disorders. Areca nut chewing is implicated in this pathological fibrosis, and it causes chronic inflammation and persistent activation of myofibroblasts. As yet, existing treatments only provide temporary symptomatic relief and there is a lack of an effective intervention to cure OSF. Therefore, development of approaches to ameliorate myofibroblast activities becomes a crucial objective to prevent the malignant progression of OSF. In this study, we examined the inhibitory effect of glabridin, an isoflavane extracted from licorice root, on the myofibroblast characteristics in human fibrotic buccal mucosal fibroblasts (fBMFs). Our results showed that myofibroblast activities, including collagen gel contractility, migration, invasion and wound healing abilities were reduced after exposure of glabridin in a dose-dependent manner. Most importantly, we demonstrated that the arecoline-induced myofiroblast activities were abolished by glabridin treatment. Additionally, the expression of the myofibroblast marker α-smooth muscle actin and other fibrogenic marker, type I collagen, in fBMFs were dose-dependently downregulated. Moreover, we showed that the production of TGF-β was suppressed by glabridin in fBMFs and the protein expression of phospho-Smad2 was decreased as well. In summary, our data suggested that glabridin repressed the myofibroblast features in fBMFs via TGF-β/Smad2 signaling pathway. Glabridin also prevented the arecoline-increased myofibroblast activities, and could serve as a natural anti-fibrosis compound for OSF.
Datum: 09.11.2017


Methylisothiazolinone may induce cell death and inflammatory response through DNA damage in human liver epithelium cells

Methylisothiazolinone (MIT) is a powerful biocide and preservative, which is widely used alone or in a 1:3 ratio with methylchloroisothiazolinone (MCIT) under the trade name of Kathons in the manufacture of numerous personal and household products. Considering that Kathons injected intravenously is distributed in the blood and then in the liver, we explored the toxic mechanism of MIT on human liver epithelium cells. At 24 h after exposure, MIT bound to the plasma membrane and the inner wall of vacuoles in the cells, and rupture of the cell membrane and nuclear envelop, autophagosome-like vacuoles formation and mitochondrial damage were observed. Cell viability dose-dependently decreased accompanying an increase of apoptotic cells, and the level of LDH, NO, IFN-gamma, IL-10 and IL-8, but not IL-1β, significantly increased in the culture media of cells exposed to MIT. Additionally, expression of autophagy-, membrane damage- and apoptosis-related proteins was notably enhanced, and the produced ATP level dose-dependently decreased with the reduced mitochondrial activity. Furthermore, the increased DNA damage and the decreased transcription activity were observed in MIT-treated cells. Meanwhile, the intracellular ROS level did not show dose-dependent change at the same time-point. Then we explored the role of autophagy in MIT-induced cytotoxicity by inhibiting or inducing the autophagic signal. Intriguingly, no additional cell death induced by autophagic modulation occurred when MIT was treated. Taken together, we suggest that MIT may induce multiple pathways of cell death and inflammatory response through DNA damage caused by rupture of the nuclear envelope.
Datum: 07.11.2017


Doxorubicin induces ZAKα overexpression with a subsequent enhancement of apoptosis and attenuation of survivability in human osteosarcoma cells

Human osteosarcoma (OS) is a malignant cancer of the bone. It exhibits a characteristic malignant osteoblastic transformation and produces a diseased osteoid. A previous study demonstrated that doxorubicin (DOX) chemotherapy decreases human OS cell proliferation and might enhance the relative RNA expression of ZAK. However, the impact of ZAKα overexpression on the OS cell proliferation that is inhibited by DOX and the molecular mechanism underlying this effect are not yet known. ZAK is a protein kinase of the MAPKKK family and functions to promote apoptosis. In our study, we found that ZAKα overexpression induced an apoptotic effect in human OS cells. Treatment of human OS cells with DOX enhanced ZAKα expression and decreased cancer cell viability while increasing apoptosis of human OS cells. In the meantime, suppression of ZAKα expression using shRNA and inhibitor D1771 both suppressed the DOX therapeutic effect. These findings reveal a novel molecular mechanism underlying the DOX effect on human OS cells. Taken together, our findings demonstrate that ZAKα enhances the apoptotic effect and decreases cell viability in DOX-treated human OS cells.
Datum: 06.11.2017


Casticin impairs cell growth and induces cell apoptosis via cell cycle arrest in human oral cancer SCC-4 cells

Casticin, a polymethoxyflavone, present in natural plants, has been shown to have biological activities including anti-cancer activities. Herein, we investigated the anti-oral cancer activity of casticin on SCC-4 cells in vitro. Viable cells, cell cycle distribution, apoptotic cell death, reactive oxygen species (ROS) production, and Ca2+ production, levels of ΔΨm and caspase activity were measured by flow cytometric assay. Cell apoptosis associated protein expressions were examined by Western blotting and confocal laser microscopy. Results indicated that casticin induced cell morphological changes, DNA condensation and damage, decreased the total viable cells, induced G2/M phase arrest in SCC-4 cells. Casticin promoted ROS and Ca2+ productions, decreases the levels of ΔΨm, promoted caspase-3, -8, and -9 activities in SCC-4 cells. Western blotting assay demonstrated that casticin affect protein level associated with G2/M phase arrest and apoptosis. Confocal laser microscopy also confirmed that casticin increased the translocation of AIF and cytochrome c in SCC-4 cells. In conclusion, casticin decreased cell number through G2/M phase arrest and the induction of cell apoptosis through caspase- and mitochondria-dependent pathways in SCC-4 cells.
Datum: 03.11.2017


Influence of DEHP on thyroid, sex steroid-related genes and gonadal differentiation in Rana chensinensis tadpoles

In the present study, responses of the Chinese brown frog (Rana chensinensis) to exposure to di-2-ethylhexyl phthalate (DEHP), a common plasticizer, during the larval period were characterized. The effects of DEHP on metamorphosis rate, thyroid hormone, thyroid histology and the expression of genes involved in the steroid hormone synthesis in gonad were investigated. Metamorphosis rate and 50 percent of the tadpoles to reach Gosner stage 42 (T0.5) were significantly slower in all DEHP groups. The thyroid glands of the tadpoles exposed to DEHP clearly exhibited colloid depletion. In addition, decreased concentrations of T4 and T3 were observed in the tadpoles exposed to DEHP. Moreover, the highest DEHP exposure (10 µmol/L DEHP) showed increased ratio of females significantly. Also, up-regulation significantly of transcripts of cytochrome P450 aromatase (CYP19) gene was detected in male tadpoles exposed to DEHP. The present results indicate that this increase in estrogens could lead to female-biased sex ratio in DEHP exposure group. Taken together, the present study indicates that DEHP disrupt thyroid hormone and sex steroid signaling in R. chensinensis tadpoles. Our present observations support evidence of a crosstalk between TH and sex steroids in gonad differentiation.
Datum: 03.11.2017


Diallyl trisulfide suppresses doxorubicin-induced cardiomyocyte apoptosis by inhibiting MAPK/NF-κB signaling through attenuation of ROS generation

Background Doxorubicin (Dox) is an effective anticancer agent. However, its effectiveness is limited by its cardiotoxic effects. It has also been reported that the mitogen-activated protein kinase family and NF-κB can be activated by Dox treatment. DATS has been shown to be a potent antioxidant with cardioprotective effects. We investigate whether Dox induces cardiac apoptosis through JNK- and ERK-dependent NF-κB upregulation that can be reduced by DATS treatment. Methods and Material H9c2 cells were treated with 0.5–1.5 μM Dox for 24 hours. Dox promoted apoptosis and ROS generation and inhibited viability in a dose-dependent manner. Then, the phosphorylation levels of JNK, ERK, and NF-κB evaluated by western blot were elevated. We used inhibitors of JNK, ERK, and NF-κB to determine which of these proteins were involved in Dox-induced apoptosis. Furthermore, Dox-exposed cells were treated with DATS at doses of 1, 5, and 10 μM, and the data demonstrated that ROS generation and apoptotic proteins were decreased and that ERK and NF-κB were downregulated in a dose-dependent manner. Additionally, six-week-old rats were divided into three groups (n = 6 per group) designed as an eight-week study. Normal, Dox (at dose 3.75 mg/kg by ip) administered with or without DATS (at dose 40 mg/kg by gavage) treatment groups. The results indicate that cardiac dysfunction, apoptosis, and JNK, ERK, and NF-κB activation by Dox were reversed by treatment with DATS. Conclusion DATS appears to suppress Dox-induced cardiomyocyte apoptosis by inhibiting NADPH oxidase-related ROS production and the downstream JNK/ERK/NF-κB signaling pathway; DATS may possess clinical therapeutic potential by blocking Dox-induced cardiotoxicity.
Datum: 31.10.2017


Dibutyltin depressed immune functions via NF-κB, and JAK/STAT signaling pathways in zebrafish (Danio rerio)

Dibutyltin (DBT) is the degradation products of TBT, which is generally considered higher toxicity than TBT in the immune system. In order to learn more about the mechanisms of immune-toxic of DBT, we exposed zebrafish (Danio rerio) to 0, 1, 10 and 100 ng/L DBT for 8 weeks. At the end of the experiment, we determined the immune parameters and immune-related genes. The results showed that with an increase in TBT dose, lysozyme activities and IgM, C3, C4 content in intestine, skin and spleen were all significantly inhibited by the DBT exposure. Fish exposed to 10 ng/L and 100 ng/L showed significantly lower lysozyme activities and IgM, C3, C4 content than those of the control group. Zebrafish exposed to 10 ng/L and 100 ng/L DBT, the mRNA transcript levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), interferon γ2 (INFγ2), nuclear factor-κB p65 (NF-kB p65), inhibitor protein-κBα (IκBα), IκB kinases β (IKKβ), Janus family of protein tyrosine kinases (JAKs) and the signal transducers and activators of transcription proteins (STATs) all increased with the DBT levels in the intestine and spleen. Those parameters showed significantly higher values in 10 ng/L and 100 ng/L than those of fish in the control group. However, no significant difference was found in IκB kinases α (IKKα) and IκB kinase γ (IKKγ) mRNA levels in the intestine and spleen. These data imply that DBT might be via suppression on IKKβ/IkBa/NF-kBp65 and JAK/STAT signaling pathways to regulate the immunity of zebrafish.
Datum: 31.10.2017


The preventive effects of edible folic acid on cardiomyocyte apoptosis and survival in early onset triple-transgenic Alzheimer's disease model mice

In recent years, neuropathological and epidemiological studies have indicated an association between Alzheimer's disease (AD) and several cardiovascular risk factors. In this study, the cardio-protective effects of folic acid (FA) in early stage AD was elucidated using a triple-transgenic (3xTg) Alzheimer's mouse model. Eleven-month-old C57BL/6 mice and 3xTg mice were assigned to five groups. During the four-month treatment period, the low-FA treatment group received FA through their diet, and the high-FA treatment groups received 3 mg/dl folate in drinking water and were also gastric-fed 1.2 mg/kg folate every day. In the C57B1/6J mice, treatment with high doses of FA (HFA) did not show any considerable effect compared to the control group or the low-dose dietary FA treatment group. However, Alzheimer's mice treated with HFA showed enhanced cardio-protection. Western blot analysis revealed that FA treatment restored SIRT1 expression, which was suppressed in 3xTg mice, through enhanced AMPK expression. FA significantly enhanced the IGF1 receptor survival mechanism in the hearts of the 3xTg mice and suppressed the expression-intrinsic and extrinsic apoptosis-associated proteins. The results suggest that FA intake may significantly alleviate cellular pathological events in the heart associated with AD.
Datum: 25.10.2017


The effect of fluoride on the structure, function, and proteome of intestinal epithelia

Fluoride exposure is widespread, with drinking water commonly containing natural and artificially added sources of the ion. Ingested fluoride undergoes absorption across the gastric and intestinal epithelia. Previous studies have reported adverse gastrointestinal effects with high levels of fluoride exposure. Here, we examined the effects of fluoride on the transepithelial ion transport and resistance of three intestinal epithelia. We used the Caco-2 cell line as a model of human intestinal epithelium, and rat and mouse colonic epithelia for purposes of comparison. Fluoride caused a concentration-dependent decline in forskolin-induced Cl– secretion and transepithelial resistance of Caco-2 cell monolayers, with an IC50 for fluoride of about 3 mM for both parameters. In the presence of 5 mM fluoride, transepithelial resistance fell exponentially with time, with a t1/2 of about 7 hours. Subsequent imaging by immunofluorescence and scanning electron microscopy showed structural abnormalities in Caco-2 cell monolayers exposed to fluoride. The Young's modulus of the epithelium was not affected by fluoride, although proteomic analysis revealed changes in expression of a number of proteins, particularly those involved in cell–cell adhesion. In line with its effects on Caco-2 cell monolayers, fluoride, at 5 mM, also had profound effects on Cl– secretion and transepithelial resistance of both rat and mouse colonic epithelia. Our results show that treatment with fluoride has major effects on the structure, function, and proteome of intestinal epithelia, but only at concentrations considerably higher than those likely to be encountered in vivo, when much lower fluoride doses are normally ingested on a chronic basis.
Datum: 25.10.2017


The natural compound 2,3,5,4′-tetrahydroxystilbene-2-O-β-d glucoside protects against adriamycin-induced nephropathy through activating the Nrf2-Keap1 antioxidant pathway

2,3,5,4′-Tetrahydroxystilbene-2-O-β-d-glucoside (THSG) is an active compound extracted from Polygonum multiflorum Thunb. This herb and radix Polygoni Multiflori preparata have been used to treat arteriosclerosis, hyperlipidemia, hypercholesterolemia, and diabetes for thousands of years. This study aimed to investigate the protective effects of THSG in an Adriamycin (AD)-induced focal segmental glomerulosclerosis (FSGS) mouse model and the underlying mechanisms in an in vitro system. Mice were treated with THSG (2.5 and 10 mg/kg, oral gavage) for 24 consecutive days. On the third day, mice were intravenously given a single dose of AD (10 mg/kg). At the end of the experiment, plasma and kidney samples were harvested to evaluate the therapeutic effects of THSG. The potential mechanisms of THSG in protecting against AD-induced cytotoxicity were examined using a real-time polymerase chain reaction, immunoblots, lactate dehydrogenase assay, and a cellular oxidized-thiol detection system in a mouse mesangial cell line. In this study, THSG showed concentration-dependent protective effects in ameliorating the progression of AD-induced FSGS. THSG suppressed albuminuria and hypercholesterolemia and reduced the status of lipid peroxidation in urine, plasma, and kidney tissue samples. Furthermore, THSG protected against podocyte damage, reduced renal fibrotic gene expressions, and alleviated the severity of glomerulosclerosis. Treatment of mouse mesangial cells with THSG induced nuclear factor erythroid-derived 2-like 2 (Nrf2) nuclear translocation, increased heme oxygenase-1 and NAD(P)H:quinone oxidoreductase (NQO)-1 gene expressions, and reduced cellular thiol oxidation and resistance to AD-induced cytotoxicity. Silencing Nrf2 and its repressor protein, Kelch-like ECH-associated protein 1 (Keap1), abolished these protective effects of THSG. In conclusion, THSG can play a protective role in ameliorating the progression of FSGS in a mouse model through activation of the Nrf2-Keap1 antioxidant pathway. Although a well-designed therapeutic study is needed, THSG may be applied to manage chronic kidney disease.
Datum: 24.10.2017


Does intranasal instillation TiO2 cause pulmonary tumorigenesis in male mice?


Datum: 21.10.2017


Transcriptome analysis for UVB-induced phototoxicity in mouse retina

Throughout life, the human eye is continuously exposed to sunlight and artificial lighting. Ambient light exposure can lead to visual impairment and transient or permanent blindness. To mimic benign light stress conditions, Mus musculus eyes were exposed to low-energy UVB radiation, ensuring no severe morphological changes in the retinal structure post-exposure. We performed RNA-seq analysis to reveal the early transcriptional changes and key molecular pathways involved before the activation of the canonical cell death pathway. RNA-seq analysis identified 537 genes that were differentially modulated, out of which 126 were clearly up regulated (>2-fold, P < .01) and 51 were significantly down regulated (<2-fold, P < .01) in response to UVB irradiation in the mouse retina. Gene ontology analysis revealed that UVB exposure affected pathways for cellular stress and signaling (eg, Creb3, Ddrgk1, Grin1, Map7, Uqcc2, Uqcrb), regulation of chromatin and gene expression (eg, Chd5, Jarid2, Kat6a, Smarcc2, Sumo1, Zfp84), transcription factors (eg, Asxl2, Atf7, Per1, Phox2a, Rxra), RNA processing, and neuronal genes (eg, B4gal2, Drd1, Grm5, Rnf40, Rnps1, Usp39, Wbp4). The differentially expressed genes from the RNA-seq analysis were validated by quantitative PCR. Both analyses yielded similar gene expression patterns. The genes and pathways identified here improve the understanding of early transcriptional responses to UVB irradiation. They may also help in elucidating the genes responsible for the inherent susceptibility of humans to UVB-induced retinal diseases.
Datum: 17.10.2017


Effects of Rhei Undulati Rhizoma on lipopolysaccharide-induced neuroinflammation in vitro and in vivo

Neuroinflammation plays a critical role in the pathogenesis of degenerative brain diseases such as Alzheimer's disease and Parkinson's disease. Microglia are the major components of the brain immune system that regulate inflammatory processes. Activated microglia release pro-inflammatory factors and cytokines, resulting in neuronal cell death. We focused on inhibiting the activation of microglia from a stimulus as a strategy to search for neuroprotective drugs. Rhei Undulati Rhizoma (RUR) is traditionally used to treat various inflammatory disorders. In this study, we investigated whether RUR modulates inflammatory processes in lipopolysaccharide (LPS)-stimulated BV2 microglia cells and the mouse brain. RUR exerted anti-neuroinflammatory effects by inhibiting the production of nitric oxide and reactive oxygen species induced by LPS via the downregulation of transcription factors such as inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) without causing cytotoxicity. RUR also regulated mitogen-activated protein kinase pathway by inhibiting phosphorylation of p38 and c-Jun N-terminal kinases and translocation of nuclear factor kappa B. Moreover, RUR attenuated LPS-induced glial activation and COX-2 expression in the substantia nigra and hippocampus of the mouse brain. These results indicate that RUR is a potential candidate to treat neurodegenerative diseases by regulating neuroinflammation.
Datum: 06.10.2017


Inhibitory effect of GMI, an immunomodulatory protein from Ganoderma microsporum, on myofibroblast activity and proinflammatory cytokines in human fibrotic buccal mucosal fibroblasts

Oral submucous fibrosis (OSF) has been indicated as one of the oral potentially malignant disorders. Epidemiological studies have attributed this pathological fibrosis to the habit of areca nuts chewing, which causes chronic inflammation and persistent activation of myofibroblasts in the oral cavity. Hence, it is crucial to find an effective intervention to ameliorate inflammation in order to prevent the malignant progression of OSF. In this study, we assessed the anti-inflammatory effect of the immunomodulatory protein, GMI, extracted from Ganoderma microsporum on the expression proinflammatory cytokines and the myofibroblast characteristics in human fibrotic buccal mucosal fibroblasts (fBMFs). Our results demonstrated that the expression level of interleukin (IL)-6 and IL-8 were decreased after exposure of GMI and the myofibroblast activities, including collagen gel contraction, migration, invasion, and wound healing abilities were inhibited as well. Furthermore, we confirmed these findings in the arecoline-stimulated BMFs. Consistent with the above findings, the expression of the myofibroblast marker α-smooth muscle actin and other fibrogenic markers, such as type I collagen, fibronectin, and vimentin in fBMFs were all reduced in a dose-dependent manner. Collectively, our data suggested that GMI suppressed the proinflammatory cytokines and myofibroblast features in fBMFs, and could serve as a promising and natural antifibrosis agent.
Datum: 06.10.2017


Microcystin-LR disrupts insulin signaling by hyperphosphorylating insulin receptor substrate 1 and glycogen synthase

Microcystin-LR (MC-LR) is a cyanobacteria-derived heptapeptide that has been commonly characterized as a hepatotoxin. Although the liver is a primary organ in glucose homeostasis, the effect of MC-LR on glucose metabolism remains unclear. In this study, the human liver cell line HL7702 and ICR mice were exposed to various concentrations of MC-LR for 24 h, and the proteins involved in insulin signaling were investigated. The results showed that MC-LR treatment induced the hyperphosphorylation of insulin receptor substrate 1 (IRS1) at several serine sites, S307, S323, S636/639, and S1101 in HL7702 cells, and S302, S318, S632/635, and S1097 in mice livers. In addition, the activation of S6K1 was demonstrated to play an important role in MC-LR-induced IRS1 hyperphosphorylation at several serine sites. Decreased levels of total IRS1 were observed in the mice livers, but there was no significant change in HL7702 cells. MC-LR also induced glycogen synthase (GS) hyperphosphorylation at S641 (inactivating GS) both in vitro and in vivo, even glycogen synthase kinase 3, a well-known GS kinase, was inactivated after MC-LR treatment. Moreover, MC-LR could block insulin-induced GS activation. In addition, glucose transport in liver cells was not impacted by MC-LR either with or without insulin stimulation. Our study implies that MC-LR can interfere with the actions of IRS1 and GS in insulin signaling and may have a toxic effect on glucose metabolism in the liver.
Datum: 06.10.2017


Angiotensin-(1-7)-mediated Mas1 receptor/NF-κB-p65 signaling is involved in a cigarette smoke-induced chronic obstructive pulmonary disease mouse model

Angiotensin-(1-7) [Ang-(1-7)] has been shown to play a significant role in the pathogenesis of lung inflammation via Mas receptor; however, its effect in chronic obstructive pulmonary disease (COPD) remains unknown. To explore the effect of Ang-(1-7) on a cigarette smoke (CS) exposure-induced COPD model, 40 C57BL/6J mice were divided into four groups (n = 10) and exposed to air or CS for 8 weeks. After that, they were treated with saline or Ang-(1-7) at 0.3 mg/kg for 2 weeks by subcutaneous infusion using osmotic pump. The day following drug/vehicle challenge, lung function was examined and bronchoalveolar lavage (BAL) was performed. Chemokine (C–X–C motif) ligand 1, interleukin-6, and tumor necrosis factor-α protein levels in BAL fluid were determined using ELISA; the corresponding mRNA levels in lung tissues were measured using RT-PCR. Mas1 receptor, pIκBα, IκBα, nuclear NF-κB-p65 protein, pERK1/2, ERK2, pp38, and p38 proteins expression in lung tissues were examined by immunohistochemical staining and western blotting. Ang-(1-7) challenge had no effect on the decreased lung function and emphysema induced by CS exposure. However, Ang-(1-7) treatment blocked CS exposure-induced lung inflammatory responses and lung fibrosis, as determined by Masson's Trichrome staining. Exposure to CS for 8 weeks caused irreversible loss of lung function and emphysema, which could not be reversed by Ang-(1-7) treatment. Thus, the beneficial effect of Ang-(1-7) may be confined to pulmonary inflammation and fibrosis.
Datum: 28.09.2017


Pulmonary fibrosis of mice and its molecular mechanism following chronic inhaled exposure to TiO2 nanoparticles

Nanoparticulate titanium dioxide (nano–TiO2) has been widely used in industry, medicine and daily life. However, assessment of nano–TiO2 toxicity on health is an important occupational safety issue. Numerous studies have demonstrated that nano-TiO2 can induced sustained pulmonary inflammation, but whether chronic exposure to nano–TiO2 results in pulmonary fibrosis is unclear. In this study, therefore, nano–TiO2 was administered to the male mice by nasal administration for six consecutive months, the inflammatory and/or fibrogenic responses induced by nano–TiO2 were investigated. The results showed that chronic inhaled nano–TiO2 induced pulmonary inflammation and firosis, increased expression of inflammatory cytokines and fibrotic cytokines including nuclear factor-κB, interleukin-1β, tumor necrosis factor–α, monocyte chemotactic protein 1, macrophage inflammatory protein–2, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, transform growth factor –β1, osteopontin, matrix metalloproteinase–1, −2, −3, and −9, tissue inhibitors of metalloproteinase-1, collagen, platelet derived growth factor, and connective tissue growth factor in mouse lung. Taken together, nano-TiO2-induced pulmonary inflammation and fibrosis are closely associated with increased expression of inflammatory and/or fibrotic cytokines, an imbalanced production of MMPs and TIMP–1 that favors fibrosis in mice, implying that nano–TiO2 may lead to potential health effects.
Datum: 25.09.2017


Nickel oxide nanoparticles induce hepatocyte apoptosis via activating endoplasmic reticulum stress pathways in rats

Nickel oxide nanoparticles (nano NiO) could induce hepatocyte apoptosis, while its potential mechanisms are unclear. This study aimed to explore the role of endoplasmic reticulum (ER) stress pathways in hepatocyte apoptosis induced by nano NiO. Male Wistar rats were administrated with nano NiO (0.015, 0.06, and 0.24 mg/kg b.w.) and micro NiO (0.24 mg/kg b.w.) by intratracheal instillation twice a week for 6 weeks. We measured the hepatocyte apoptosis levels by TdT-mediated dUTP nick-end labeling (TUNEL) staining, ER stress related gene and protein expression levels in rat liver. The results showed that the TUNEL positive cells increased after exposure nano NiO, hinting hepatocyte apoptosis. The up-regulated gene and protein levels of 78 kD glucose regulated protein and CCAAT/enhancer binding protein homologous protein suggested that nano NiO triggered ER stress. Nano NiO exposure contributed to the increased protein contents of inositol-requiring enzyme 1 (IRE-1)α, p-IRE-1α, X box protein-1S, pancreatic ER kinase (PERK), p-PERK, eukaryotic initiation factor-2 alpha (eIF-2α), p-eIF-2α, caspase-12, −9, and −3, implicating that nano NiO can activate the pathways of ER stress-mediated apoptosis. These findings indicate that the ER stress pathways may play an important role in hepatocyte apoptosis induced by nano NiO.
Datum: 25.09.2017


Ethyl acetate fraction from methanol extraction of Vitis thunbergii var. taiwaniana induced G0/G1 phase arrest via inhibition of cyclins D and E and induction of apoptosis through caspase-dependent and -independent pathways in human prostate carcinoma DU145 cells

Vitis thunbergii var. taiwaniana (VTT) is a wild grape native to Taiwan, belonging to the Vitaceae family and Vitis genus, and widely used as folk herbal medicine. It is traditionally used for the treatment of diarrhea, hypertension, neuroprotection, jaundice, and arthritis. We used the wild-collected VTT and sterilized them to establish the plant tissue culture, and then took the leaves for DNA sequencing to determine its original base. We use methanol to extract VTT in four different solvents: 1-butanol, n-hexane, ethyl acetate, and water. These four preliminary extracts were used to treat human prostate cancer DU145 cells in vitro. We use the flow cytometry to check the cell survival situation. Finally, we found the ethyl acetate layer roughing product (referred VTEA) in human prostate cancer apoptotic effects of cell line DU-145. In the present studies, we use the crude extract of VTT to examine whether or not it can induce apoptosis of DU145 cells in vitro. Viability assays for extracts of VTT treatment showed that it had dose-dependent effect on human prostate cancer DU145 cells. We also found that the extract of VTT induces time-dependent mitochondrial and intrinsic-dependent apoptosis pathways. The in vitro cytotoxic effects were investigated by cell cycle analysis and the determination of apoptotic DNA fragmentation in DU145 cells. The cell cycle analysis showed that extracts of VTT induced a significant increase in the number of cells in G0/G1 phase. The extract of VTT induced chromatin changes and apoptosis of DU145 cells also were confirmed by DAPI and PI staining that were measured by fluorescence microscopy and flow cytometry, respectively. Finally, the expression of relevant proteins was analyzed by Western blot analysis. These results promoted us to further evaluate apoptosis associated proteins and elucidate the possible signal pathway in DU-145 cells after treated with the extract of VTT.
Datum: 22.09.2017


The role S-nitrosylation in manganese-induced autophagy dysregulation in SH-SY5Y cells

Overexposure to manganese (Mn) has been known to induce nitrosative stress. The dysregulation of autophagy has implicated in nitric oxide (NO) bioactivity alterations. However, the mechanism of Mn-induced autophagic dysregulation is unclear. The protein of Bcl-2 was considered as a key role that could participate to the autophagy signaling regulation. To further explore whether S-nitrosylation of Bcl-2 involved in Mn-induced autophagy dysregulation, we treated human neuroblastoma (SH-SY5Y) cells with Mn and pretreated cells with 1400 W, a selective iNOS inhibitor. After cells were treated with 400 μM Mn for 24 h, there were significant increases in production of NO, inducible NO synthase (iNOS) activity, the mRNA and protein expressions of iNOS. Interestingly, autophagy was activated after cells were treated with Mn for 0–12 h; while the degradation process of autophagy-lysosome pathway was blocked after cells were treated with Mn for 24 h. Moreover, S-nitrosylated JNK and Bcl-2 also increased and phospho-JNK and phospho-Bcl-2 reduced in Mn-treated cells. Then, the affinity between Bcl-2 and Beclin-1 increased significantly in Mn-treated cells. We used the 1400 W to neutralize Mn-induced nitrosative stress. The results showed that S-nitrosylated JNK and Bcl-2 reduced while their phosphorylation were recovered to some extent. The findings revealed that NO-mediated S-nitrosylation of Bcl-2 directly affected the interaction between Beclin-1 and Bcl-2 leading to autophagy inhibition.
Datum: 30.08.2017


Cellular apoptosis and cardiac dysfunction in STZ-induced diabetic rats attenuated by anthocyanins via activation of IGFI-R/PI3K/Akt survival signaling

Anthocyanins are known cyto-protective agents against various stress conditions. In this study cardio-protective effect of anthocyanins from black rice against diabetic mellitus (DM) was evaluated using a streptozotocin (STZ)-induced DM rat model. Five-week-old male Wistar rats were administered with STZ (55 mg kg−1, IP) to induce DM; rats in the treatment group received 250 mg oral anthocyanin/kg/day during the 4-week treatment period. DM and the control rats received normal saline through oral gavage. The results reveal that STZ-induced DM elevates myocardial apoptosis and associated proapoptotic proteins but down-regulates the proteins of IGF1R mediated survival signaling mechanism. Furthermore, the functional parameters such as the ejection-fraction and fraction-shortening in the DM rat hearts declined considerably. However, the rats treated with anthocyanins significantly reduced apoptosis and the associated proapoptotic proteins and further increased the survival signals to restore the cardiac functions in DM rats. Anthocyanin supplementation enhances cardiomyocyte survival and restores cardiac function.
Datum: 30.08.2017


Reduced Nrf2 activation in PI3K phosphorylation-impaired vitiliginous keratinocytes increases susceptibility to ROS-generating chemical-induced apoptosis

Keratinocytes in affected epidermis of vitiligo patients are known to have impaired activation of the PI3K/AKT pathway. Based on critical roles of keratinocytes and oxidative stress in vitiligo development, this study examined whether keratinocytes with impaired PI3K activation were more vulnerable to apoptosis caused by oxidative stress from phenolic compounds, p-tert-butylphenol (4-TBP) and hydroquinone (HQ). Cell viability assay, FACS analysis, ELISA for TNF-α or IL-1a, ROS assay, Western blot analysis for Nrf2 expression, and confocal microscopy with anti-Nrf2 and phospho-PI3K antibodies were done on primary cultured normal human keratinocytes with or without PI3K knockdown in the presence or absence of chemical treatment or antioxidant. Immunofluorescence staining using anti-Nrf2, phospho-PI3K, TNF-ɑ, and IL-1ɑ antibodies, ROS assay using dihydroethidium, and TUNEL assay were performed on sets of depigmented and normally pigmented skin from vitiligo patients. Results showed that 4-TBP or HQ treatment increased apoptosis and the expression levels of TNF-ɑ, IL-1ɑ, and ROS in PI3K-knockdown keratinocytes which reduced Nrf2 nuclear translocation compared to control keratinocytes. These changes were significantly recovered by an antioxidant treatment. Depigmented epidermis of vitiligo patients also showed lower levels of Nrf2 and phospho-PI3K but higher levels of ROS, TNF-ɑ, IL-1ɑ, and ROS with more TUNEL-positive cells. Therefore, impaired PI3K activation in keratinocytes in depigmented epidermis of vitiligo patients are vulnerable to apoptosis caused by ROS-generating chemicals due to reduced Nrf2 activation.
Datum: 24.08.2017


Actein alleviates 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated cellular dysfunction in osteoblastic MC3T3-E1 cells

The environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known to affect bone metabolism. We evaluated the protective effects of the triterpene glycoside actein from the herb black cohosh against TCDD-induced toxicity in MC3T3-E1 osteoblastic cells. We found that TCDD significantly reduced cell viability and increased apoptosis and autophagy in MC3T3-E1 osteoblastic cells (P < .05). In addition, TCDD treatment resulted in a significant increase in intracellular calcium concentration, mitochondrial membrane potential collapse, reactive oxygen species (ROS) production, and cardiolipin peroxidation, whereas pretreatment with actein significantly mitigated these effects (P < .05). The effects of TCDD on extracellular signal-related kinase (ERK), aryl hydrocarbon receptor, aryl hydrocarbon receptor repressor, and cytochrome P450 1A1 levels in MC3T3-E1 cells were significantly inhibited by actein. The levels of superoxide dismutase, ERK1, and nuclear factor kappa B mRNA were also effectively restored by pretreatment with actein. Furthermore, actein treatment resulted in a significant increase in alkaline phosphatase (ALP) activity and collagen content, as well as in the expression of genes associated with osteoblastic differentiation (ALP, type I collagen, osteoprotegerin, bone sialoprotein, and osterix). This study demonstrates the underlying molecular mechanisms of cytoprotection exerted by actein against TCDD-induced oxidative stress and osteoblast damage.
Datum: 24.08.2017


Galangin suppresses H2O2-induced aging in human dermal fibroblasts

Human skin aging is a progressive process that includes intrinsic aging and extrinsic photodamage, both of which can cause an accumulation of reactive oxygen species (ROS), resulting in dermal fibrosis dysfunction and wrinkle formation. Galangin is a flavonoid that exhibits anti-inflammatory and antioxidative potential. Previous studies have reported that galangin has antioxidative activity against ROS-mediated stress. The aim of the present study is to determine the antiaging effects of galangin on dermal fibroblasts exposed to H2O2. In this study, we established a hydrogen peroxide-induced inflammation and aging model using human HS68 dermal fibroblasts. Stimulation of fibroblasts with H2O2 is associated with skin aging and increased expression of inflammation-related proteins, along with downregulation of collagen I/III formation and expression of antioxidative proteins. Galangin effectively reduced NF-κB activation, the expression of inflammation-related proteins and cell aging. Galangin also reversed H2O2-activated cell senescence in HS68 cells. Our results reveal that galangin protects human dermal fibroblasts by inhibiting NF-κB activation, decreases the expression of inflammatory factors and upregulates IGF1R/Akt-related proteins, indicating that galangin may be a potential candidate for developing natural antiaging products that protect skin from damage caused by ROS.
Datum: 18.08.2017


Evaluation of cytotoxicity of propofol and its related mechanism in glioblastoma cells and astrocytes

Propofol (2,6-diisopropylphenol), one of the extensively and commonly used anesthetic agents, has been shown to affect the biological behavior of various models. Previous researches have shown that propofol-induced cytotoxicity might cause anticancer effect in different cells. However, the mechanisms underlying the effect of propofol on cytotoxicity is still elusive in human glioblastoma cells. The aims of this study were to evaluate effects of propofol on cytotoxicity, cell cycle distribution and ROS production, and establish the relationship between oxidative stress and cytotoxicity in GBM 8401 human glioblastoma cells and DI TNC1 rat astrocytes. Propofol (20–30 μM) concentration-dependently induced cytotoxicity, cell cycle arrest, and increased ROS production in GBM 8401 cells but not in DI TNC1 cells. In GBM 8401 cells, propofol induced G2/M phase cell arrest, which affected the CDK1, cyclin B1, p53, and p21 protein expression levels. Furthermore, propofol induced oxygen stresses by increasing O2− and H2O2 levels but treatment with the antioxidant N-acetylcysteine (NAC) partially reversed propofol-regulated antioxidative enzyme levels (superoxide dismutase, catalase, and glutathione peroxidase). Most significantly, propofol induced apoptotic effects by decreasing Bcl-2 but increasing Bax, cleaved caspase-9/caspase-3 levels, which were partially reversed by NAC. Moreover, the pancaspase inhibitor Z-VAD-FMK also partially prevented propofol-induced apoptosis. Together, in GBM 8401 cells but not in DI TNC1 cells, propofol activated ROS-associated apoptosis that involved cell cycle arrest and caspase activation. These findings indicate that propofol not only can be an anesthetic agent which reduces pain but also has the potential to be used for the treatment of human glioblastoma.
Datum: 14.08.2017


Retracted: Long-term copper toxicity in apple trees (Malus pumila Mill) and bioaccumulation in fruits

The following article from Environmental Toxicology, ‘Long-term Copper Toxicity in Apple Trees (Malus pumila Mill) and Bioaccumulation in Fruits’ by Bai-Ye Sun, Shi- Hong Kan, Yan-Zong Zhang, Jun Wu, Shi-Huai Deng, Chun-Sheng Liu and Gang Yang, published online on January 15, 2010 in Wiley InterScience (www.interscience.wiley.com; DOI: 10.1002/tox.20565), has been retracted by agreement between the authors, the journal Editor in Chief, Dr. Paul Tchounwou, and Wiley Periodicals, Inc. The retraction has been agreed at the request of the authors due to overlap with ‘Copper Toxicity and Bioaccumulation in Chinese Cabbage (Brassica pekinensis Rupr.)’ by Zhi-Ting Xiong and Hai Wang, published in Environmental Toxicology, Volume 20, pages 188–194, 2005.
Datum: 15.01.2010






Information about this site:

Last update: 08.02.2016

The author- or copyrights of the listed Internet pages are held by the respective authors or site operators, who are also responsible for the content of the presentations.

To see your page listed here: Send us an eMail! Condition: Subject-related content on chemistry, biochemistry and comparable academic disciplines!

Topic: Current, research, scientific, environmental, toxicology, sciences, letters, science, recent, journal, list, articles..








(C) 1996 - 2017 Internetchemistry










Current Chemistry Job Vacancies:

[more job vacancies]