Hide Menu
Hide Menu   Home   |     About Us   |   Contact   |   Imprint   |   Privacy   |   Sitemap
Hide Menu   Chemistry Index   |   Chemicals   |   Elemente
Hide Menu   Lab Instruments   |  
Hide Menu   Job Vacancies   |  
Hide Menu   Chemistry Forum   |  
Chemistry A - Z
Equipment for Lab and Industry
Chemicals and Compounds
Job Vacancies
Imprint, Contact

 

Biogeochemistry

Current research reports and chronological list of recent articles..




The international scientific journal Biogeochemistry publishes original papers and occasional reviews dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems.

The publisher is Springer. The copyright and publishing rights of specialized products listed below are in this publishing house. This is also responsible for the content shown.

To search this web page for specific words type "Ctrl" + "F" on your keyboard (Command + "F" on a Mac). Then: type the word you are searching for in the window that pops up!

Additional research articles see Current Chemistry Research Articles. General information about this topic see biogeochemistry.



Biogeochemistry - Abstracts



Correction to: The biogeochemical consequences of litter transformation by insect herbivory in the Subarctic: a microcosm simulation experiment

Table 1 contained a typesetting error in the initial online publication. The original article has been corrected.


Datum: 22.05.2018


Carbon biogeochemistry of a flooded Pantanal forest over three annual flood cycles

Abstract

The Pantanal is the largest wetland in the world and yet little is known about the variability in carbon (C) dynamics across its flood seasons. We examined the effect of inundation on the C cycle in the 2013–2015 flood cycles illustrated by dissolved CO2, CH4, organic C (DOC) concentration measurements, and optical properties of dissolved organic matter (DOM) evaluated by absorbance and fluorescence spectroscopy with parallel factor analysis (PARAFAC). During the 2015 flood cycle, pCO2 varied between 5973 and 14,292 μatm, with pCH4 concentrations ranging between 2956 and 51,675 μatm respectively, with high temporal variability for both gases. The supersaturation of CO2 and CH4 in relation to the atmospheric equilibrium caused the system to behave as a net source of CO2 and CH4 to the atmosphere with evasion rates of 320 mg CO2 m−2 d−1 and 20 mg CH4 m−2 d−1, respectively. Mean DOC concentration was 7.0 ± 0.4 mg L−1 and did not differ between flood cycles. Higher concentrations of DOC were measured at the start (rising floodwaters) and at the end (receding floodwaters) of flood cycles, while lower DOC concentrations were observed during the peak flood. The PARAFAC analysis indicated the presence of five DOM components: humic (C1 and C2) and fulvic type material (C3) showed the highest relative abundance (68.5% of the total PARAFAC component fluorescence), as well as protein-like material (C4 and C5) derived from microorganisms. Our measured diffusive flux levels were below the range of emissions found for wetlands and floodplains for CO2, but were slightly higher for CH4 relative to other studies in lakes and seasonally flooded areas of the Pantanal. The large variations in concentrations of CO2, CH4 and DOC and the optical properties of DOM during the course of each flood cycle suggest a close relationship between carbon and water cycles in this tropical wetland.


Datum: 17.05.2018


Nitrogen oligotrophication in northern hardwood forests

Abstract

While much research over the past 30 years has focused on the deleterious effects of excess N on forests and associated aquatic ecosystems, recent declines in atmospheric N deposition and unexplained declines in N export from these ecosystems have raised new concerns about N oligotrophication, limitations of forest productivity, and the capacity for forests to respond dynamically to disturbance and environmental change. Here we show multiple data streams from long-term ecological research at the Hubbard Brook Experimental Forest in New Hampshire, USA suggesting that N oligotrophication in forest soils is driven by increased carbon flow from the atmosphere through soils that stimulates microbial immobilization of N and decreases available N for plants. Decreased available N in soils can result in increased N resorption by trees, which reduces litterfall N input to soils, further limiting available N supply and leading to further declines in soil N availability. Moreover, N oligotrophication has been likely exacerbated by changes in climate that increase the length of the growing season and decrease production of available N by mineralization during both winter and spring. These results suggest a need to re-evaluate the nature and extent of N cycling in temperate forests and assess how changing conditions will influence forest ecosystem response to multiple, dynamic stresses of global environmental change.


Datum: 12.05.2018


The impact of flooding on aquatic ecosystem services

Abstract

Flooding is a major disturbance that impacts aquatic ecosystems and the ecosystem services that they provide. Predicted increases in global flood risk due to land use change and water cycle intensification will likely only increase the frequency and severity of these impacts. Extreme flooding events can cause loss of life and significant destruction to property and infrastructure, effects that are easily recognized and frequently reported in the media. However, flooding also has many other effects on people through freshwater aquatic ecosystem services, which often go unrecognized because they are less evident and can be difficult to evaluate. Here, we identify the effects that small magnitude frequently occurring floods (< 10-year recurrence interval) and extreme floods (> 100-year recurrence interval) have on ten aquatic ecosystem services through a systematic literature review. We focused on ecosystem services considered by the Millennium Ecosystem Assessment including: (1) supporting services (primary production, soil formation), (2) regulating services (water regulation, water quality, disease regulation, climate regulation), (3) provisioning services (drinking water, food supply), and (4) cultural services (aesthetic value, recreation and tourism). The literature search resulted in 117 studies and each of the ten ecosystem services was represented by an average of 12 ± 4 studies. Extreme floods resulted in losses in almost every ecosystem service considered in this study. However, small floods had neutral or positive effects on half of the ecosystem services we considered. For example, small floods led to increases in primary production, water regulation, and recreation and tourism. Decision-making that preserves small floods while reducing the impacts of extreme floods can increase ecosystem service provision and minimize losses.


Datum: 11.05.2018


The sources and distribution of carbon (DOC, POC, DIC) in a mangrove dominated estuary (French Guiana, South America)

Abstract

Mangrove forests are highly productive coastal ecosystems that significantly influence global carbon cycling. This study characterized the sources of dissolved organic carbon (DOC), particulate organic carbon (POC) and dissolved inorganic carbon (DIC) and the processes affecting their distributions in a mangrove-influenced estuary located in French Guiana (FG), a region representative of these dynamic systems down drift of the Amazon River. Four sampling cruises were carried out between 2013 and 2015 in surface waters of the estuary during dry and wet seasons. Stable isotopes (δ13DOC, δ13POC, δ13DIC), elemental ratios and optical properties (absorption) were used as proxies to identify different C sources. Property–salinity relationships revealed regions of approximately linear mixing (e.g., alkalinity) or net sources or sinks (e.g., DOC). DIC speciation and isotopic distributions demonstrated dynamic source–sink reaction processes within the estuary. DOC was the major form of organic carbon representing mixtures of terrestrial sources (e.g., pore water, litter leaching) and very high concentration (400–800 µM) compared to other mangrove settings (e.g. Brazilian, Sundarbans, African). Highly negative δ13POC (− 40‰) in the riverine part presumably suggests the role of freshwater phytoplankton in the dry season and methanotrophic sources derived from senescent mangrove deposits or upstream hydrothermal dam during the wet season. Microphytobenthos and marine phytoplankton were the primary sources of POC inshore and DOC offshore, respectively. Mangrove products and benthic microalgae dominated estuarine sources of C in FG coastal waters (~ 10 km, inner shelf region), and there was extensive exchange of C between forest and tidal flat and the estuarine reservoirs.


Datum: 11.05.2018


The biogeochemical consequences of litter transformation by insect herbivory in the Subarctic: a microcosm simulation experiment

Abstract

Warming may increase the extent and intensity of insect defoliations within Arctic ecosystems. A thorough understanding of the implications of this for litter decomposition is essential to make predictions of soil-atmosphere carbon (C) feedbacks. Soil nitrogen (N) and C cycles naturally are interlinked, but we lack a detailed understanding of how insect herbivores impact these cycles. In a laboratory microcosm study, we investigated the growth responses of heterotrophic soil fungi and bacteria as well as C and N mineralisation to simulated defoliator outbreaks (frass addition), long-term increased insect herbivory (litter addition at higher background N-level) and non-outbreak conditions (litter addition only) in soils from a Subarctic birch forest. Larger amounts of the added organic matter were mineralised in the outbreak simulations compared to a normal year; yet, the fungal and bacterial growth rates and biomass were not significantly different. In the simulation of long-term increased herbivory, less litter C was respired per unit mineralised N (C:N of mineralisation decreased to 20 ± 1 from 38 ± 3 for pure litter), which suggests a directed microbial mining for N-rich substrates. This was accompanied by higher fungal dominance relative to bacteria and lower total microbial biomass. In conclusion, while a higher fraction of foliar C will be respired by insects and microbes during outbreak years, predicted long-term increases in herbivory linked to climate change may facilitate soil C-accumulation, as less foliar C is respired per unit mineralised N. Further work elucidating animal-plant-soil interactions is needed to improve model predictions of C-sink capacity in high latitude forest ecosystems.


Datum: 05.05.2018


Organic carbon transfers in the subtropical Red River system (Viet Nam): insights on CO 2 sources and sinks

Abstract

The Red River, draining a 169,000 km2 watershed, is the second largest river in Viet Nam and constitutes the main source of water for a large percentage of the population of North Viet Nam. Here we present the results of an investigation into the spatial distribution and temporal dynamics of particulate and dissolved organic carbon (POC and DOC, respectively) in the Red River Basin. POC concentrations ranged from 0.24 to 5.80 mg C L−1 and DOC concentrations ranged from 0.26 to 5.39 mg C L−1. The application of the Seneque/Riverstrahler model to monthly POC and DOC measurements showed that, in general, the model simulations of the temporal variations and spatial distribution of organic carbon (OC) concentration followed the observed trends. They also show the impact of high population densities (up to 994 inhab km−2 in the delta area) on OC inputs in surface runoff from the different land use classes and from urban point sources. A budget of the main fluxes of OC in the whole river network, including diffuse inputs from soil leaching and runoff and point sources from urban centers, as well as algal net primary production and heterotrophic respiration was established using the model results. It shows the predominantly heterotrophic character of the river system and provides an estimate of CO2 emissions from the river of 330 Gg C year−1. This value is in reasonable agreement with the few available direct measurements of CO2 fluxes in the downstream part of the river network.


Datum: 02.05.2018


Carbon biogeochemistry and CO 2 emissions in a human impacted and mangrove dominated tropical estuary (Can Gio, Vietnam)

Abstract

The quantitative contribution of tropical estuaries to the atmospheric CO2 budget has large uncertainties, both spatially and seasonally. We investigated the seasonal and spatial variations of carbon biogeochemistry downstream of Ho Chi Minh City (Southern Vietnam). We sampled four sites distributed from downstream of a highly urbanised watershed through mangroves to the South China Sea coast during the dry and wet seasons. Measured partial pressure of CO2 (pCO2) ranged from 660 to 3000 μatm during the dry season, and from 740 to 5000 μatm during the wet season. High organic load, dissolved oxygen saturation down to 17%, and pCO2 up to 5000 μatm at the freshwater endmember of the estuary reflected the intense human pressure on this ecosystem. We show that releases from mangrove soils affect the water column pCO2 in this large tropical estuary (~600 m wide and 10–20 m deep). This study is among the few to report direct measurements of both water pCO2 and CO2 emissions in a Southeast Asian tropical estuary located in a highly urbanised watershed. It shows that the contribution of such estuaries may have been previously underestimated, with CO2 emissions ranging from 74 to 876 mmol m−2 day−1 at low current velocity (< 0.2 m s−1). Corresponding gas transfer velocities k600, ranging from 1.7 to 11.0 m day−1, were about 2 to 4 times of k600 estimated using published literature equations.


Datum: 27.04.2018


A net ecosystem carbon budget for snow dominated forested headwater catchments: linking water and carbon fluxes to critical zone carbon storage

Abstract

Climate-driven changes in carbon (C) cycling of forested ecosystems have the potential to alter long-term C sequestration and the global C balance. Prior studies have shown that C uptake and partitioning in response to hydrologic variation are system specific, suggesting that a comprehensive assessment is required for distinct ecosystems. Many sub-humid montane forest ecosystems in the US are projected to experience increased water limitation over the next decades and existing water-limited forests can be used as a model for how changes in the hydrologic cycle will impact such ecosystems more broadly. Toward that goal we monitored precipitation, net ecosystem exchange and lateral soil and stream C fluxes in three semi-arid to sub-humid montane forest catchments for several years (WY 2009–2013) to investigate how the amount and timing of water delivery affect C stores and fluxes. The key control on aqueous and gaseous C fluxes was the distribution of water between winter and summer precipitation, affecting ecosystem C uptake versus heterotrophic respiration. We furthermore assessed C stores in soil and above- and below-ground biomass to assess how spatial patterns in water availability influence C stores. Topographically-driven patterns in catchment wetness correlated with modeled soil C stores, reflecting both long-term trends in local C uptake as well as lateral redistribution of C leached from upslope organic soil horizons to convergent landscape positions. The results suggest that changes in the seasonality of precipitation from winter snow to summer rain will influence both the amount and the spatial distribution of soil C stores.


Datum: 21.04.2018


Geothermally warmed soils reveal persistent increases in the respiratory costs of soil microbes contributing to substantial C losses

Abstract

Increasing temperatures can accelerate soil organic matter decomposition and release large amounts of CO2 to the atmosphere, potentially inducing positive warming feedbacks. Alterations to the temperature sensitivity and physiological functioning of soil microorganisms may play a key role in these carbon (C) losses. Geothermally active areas in Iceland provide stable and continuous soil temperature gradients to test this hypothesis, encompassing the full range of warming scenarios projected by the Intergovernmental Panel on Climate Change for the northern region. We took soils from these geothermal sites 7 years after the onset of warming and incubated them at varying temperatures and substrate availability conditions to detect persistent alterations of microbial physiology to long-term warming. Seven years of continuous warming ranging from 1.8 to 15.9 °C triggered a 8.6–58.0% decrease on the C concentrations in the topsoil (0–10 cm) of these sub-arctic silt-loam Andosols. The sensitivity of microbial respiration to temperature (Q10) was not altered. However, soil microbes showed a persistent increase in their microbial metabolic quotients (microbial respiration per unit of microbial biomass) and a subsequent diminished C retention in biomass. After an initial depletion of labile soil C upon soil warming, increasing energy costs of metabolic maintenance and resource acquisition led to a weaker capacity of C stabilization in the microbial biomass of warmer soils. This mechanism contributes to our understanding of the acclimated response of soil respiration to in situ soil warming at the ecosystem level, despite a lack of acclimation at the physiological level. Persistent increases in the respiratory costs of soil microbes in response to warming constitute a fundamental process that should be incorporated into climate change-C cycling models.


Datum: 17.04.2018


Transitional slopes act as hotspots of both soil CO 2 emission and CH 4 uptake in a temperate forest landscape

Abstract

Forest soils are an important component of CO2 and CH4 fluxes at the global scale, but the magnitude of these fluxes varies greatly in space and time within a landscape. Understanding the spatial and temporal distributions of these fluxes across complex landscapes remains a major challenge for researchers and land managers alike. We investigated the spatiotemporal variability of soil-atmosphere CO2 and CH4 fluxes and the relationships of these fluxes to chemical and physical soil properties distributed across a topographically-heterogeneous landscape. Soil CO2 and CH4 fluxes were measured along with soil temperature, moisture, bulk density, texture, carbon, sorption capacity, and dissolved organic matter quality over 2 years along hillslope transects spanning valley bottom, transition zone, and upland landscape positions in a temperate forest watershed. Transition zone soil CO2 efflux was 54–160% higher than low-lying valley bottoms, and 15–54% higher than uplands. Net seasonal CH4 uptake was 58–150% higher in transition zone soils than in uplands, while valley bottoms were occasionally large net sources (up to 19 nmol CH4 m−2 s−1). Soil CO2 efflux and net CH4 uptake were both positively associated with seasonal temperature, and were highest in soils with relatively high carbon and clay content, and relatively low bulk density, moisture, and sorption capacity. We concluded that: (1) transition zone soils act as landscape hotspots for net CH4 uptake in addition to CO2 efflux, and (2) that this spatial distribution is more consistent across seasons for net CH4 uptake than for CO2 efflux.


Datum: 01.04.2018


The C-biogeochemistry of a Midwestern USA agricultural impoundment in context: Lake Decatur in the intensively managed landscape critical zone observatory

Abstract

The damming of rivers has created hotspots for organic carbon sequestration and methane production on a global scale as the reservoirs intercept fluvial suspended and dissolved loads. To better understand how the C-biogeochemistry of a reservoir responds to watershed processes and evolves over time, Lake Decatur, located in the Intensively Managed Landscape Critical Zone Observatory (IML-CZO) was studied. Solid phase analyses (% organic C, C/N, δ13C, δ15N) of soils and sediments sampled from stream bank exposures, river suspensions, and the lake bottom were conducted to characterize organic C (OC) sources throughout the sedimentary system. Agriculturally-driven soil erosion rapidly altered lake bathymetry causing an evolution of sedimentary and OC deposition patterns, which in turn shaped where and when methane production occurred. A positive correlation between OC accumulation rate and porewater dissolved inorganic C (DIC) δ13C profiles indicates that methane generation is strongly influenced by OC burial rate. The sources of the lake bed particulate organic C (POC) have also evolved over time. Drowned vegetation and/or shoreline inputs were dominant initially in areas adjacent to the original river channel but were rapidly overwhelmed by the deposition of sediments derived from eroded agricultural soils. Eutrophication of the lake followed with the onset of heavy fertilizer application post-1960. This succession of sources is expected to be commonplace for reservoirs greater than ~ 50–60 years old in agricultural settings because of the relative timing of tillage and fertilizer practices. The 13C/12C ratios of methane from Lake Decatur were more depleted in 13C than what is commonly expected for freshwater sedimentary environments. The 13C-depletion suggests that CO2-reduction is the dominant methanogenic pathway rather than the anticipated acetate dissimilation process. The isotopic observations reveal that commonly held assumptions about methane production and its C-isotopic signature in freshwater systems are over-simplified and not strictly applicable to this system.


Datum: 01.04.2018


Differential effects of chronic and acute simulated seawater intrusion on tidal freshwater marsh carbon cycling

Abstract

Tidal freshwater ecosystems experience acute seawater intrusion associated with periodic droughts, but are expected to become chronically salinized as sea level rises. Here we report the results from an experimental manipulation in a tidal freshwater Zizaniopsis miliacea marsh on the Altamaha River, GA where diluted seawater was added to replicate marsh plots on either a press (constant) or pulse (2 months per year) basis. We measured changes in porewater chemistry (SO42−, Cl, organic C, inorganic nitrogen and phosphorus), ecosystem CO2 and CH4 exchange, and microbial extracellular enzyme activity. We found that press (chronic) seawater additions increased porewater chloride and sulfate almost immediately, and ammonium and phosphate after 2–4 months. Chronic increases in salinity also decreased net ecosystem exchange, resulting in reduced CO2 and CH4 emissions from press plots. Our pulse treatment, designed to mimic natural salinity incursion in the Altamaha River (September and October), temporarily increased porewater ammonium concentrations but had few lasting effects on porewater chemistry or ecosystem carbon balance. Our findings suggest that long-term, chronic saltwater intrusion will lead to reduced C fixation and the potential for increased nutrient (N, P) export while acute pulses of saltwater will have temporary effects.


Datum: 01.04.2018


Earthworm impacts on trace metal (Al, Fe, Mo, Cu, Zn, Pb) exchangeability and uptake by young Acer saccharum and Polystichum acrostichoides

Abstract

Non-native earthworms are a continued source of environmental change in the northeastern United States that may affect trace metals in the plant-soil system, with largely unknown effects. We assessed earthworm impacts on exchangeable and strong acid extractable (total) concentrations and pools of Al, Fe, Cu, Zn, Mo, Pb in non-point source polluted, forest soil horizons (Organic, A, and B) and foliar metals concentrations in young (< 3 years) Acer saccharum and Polystichum acrostichoides at four proximal forests in the Finger Lakes Region of New York. We observed decreasing total trace metal Organic horizon pools and increasing total trace metal A horizon concentrations as a function of increasing earthworm biomass. Earthworms had limited effects on exchangeable concentrations in A and B horizons and total metal concentrations in the B horizon. Foliar trace metal concentrations in Acer were better explained by earthworm biomass than soil concentrations but foliar concentrations for Polystichum were poorly predicted by both earthworm biomass and soil metal concentrations. Our results suggest that earthworms can affect trace metal uptake by some plants, but not by increasing soil trace metal exchangeability or from changing soil properties (pH, %SOM, or cation exchange capacity). Instead, non-native earthworms may indirectly alter understory plant uptake of trace metals.


Datum: 01.04.2018


In situ CH 4 oxidation inhibition and 13 CH 4 labeling reveal methane oxidation and emission patterns in a subarctic heath ecosystem

Abstract

Net methane (CH4) flux across the ecosystem-atmosphere boundary is governed by two counteracting processes, CH4 oxidation and production. Recent research on CH4 cycling has focused on net CH4 fluxes, however, the separate processes of CH4 oxidation and production may vary at local scales and respond differently to environmental change. Here, we separate CH4 oxidation and production, measured as emission, in situ using CH4 oxidation inhibition combined with a novel in situ 13CH4 labeling experiment to determine the rate of soil oxidation of atmospheric CH4. The study was conducted in a subarctic heath ecosystem with three characteristic plant community types: moist mixed species heath, dry Carex-dominated heath, and wet Eriophorum-dominated fen. We further explored the projected climate change effects of increased temperature and enhanced leaf litter input. The CH4 oxidation inhibition experiment revealed significant potential CH4 emission despite net CH4 uptake. Total CH4 oxidation and potential CH4 emission rates differed significantly between plant communities, demonstrating high local-scale variation in CH4 fluxes. Climate treatments did not affect CH4 oxidation rates, however, warming tended to increase potential CH4 emission, indicating that climate change may affect oxidation and production rates asymmetrically. Near-surface soil oxidation of atmospheric CH4 was successfully traced using 13C stable isotope labeling in situ. CH4 oxidation rates ranged widely, yet preliminarily suggested some degree of substrate limitation. Accounting for the local-scale variation in CH4 fluxes and the relative importance of the separate processes of CH4 oxidation and production will contribute importantly to predicting changes in landscape-scale CH4 budgets and climate feedbacks.


Datum: 01.04.2018


Effects of long-term nitrogen deposition on phosphorus leaching dynamics in a mature tropical forest

Abstract

Elevated anthropogenic nitrogen (N) deposition is suggested to affect ecosystem phosphorus (P) cycling through altered biotic P demand and soil acidification. To date, however, there has been little information on how long-term N deposition regulates P fluxes in tropical forests, where P is often depleted. To address this question, we conducted a long-term N addition experiment in a mature tropical forest in southern China, using the following N treatments: 0, 50, 100, and 150 kg N ha−1 year−1. We hypothesized that (i) tropical forest ecosystems have conservative P cycling with low P output, and (ii) long-term N addition decreases total dissolved phosphorus (TDP) leaching losses due to reduced litter decomposition rates and stimulated P sorption deriving from accelerated soil acidification. As hypothesized, we demonstrated a closed P cycling with low leaching outputs in our forest. Under experimental N addition, TDP flux in throughfall was significantly reduced, suggesting that N addition may result in a less internal P recycling. Contrary to our hypothesis, N addition did not decrease TDP leaching, despite reduced litter decomposition and accelerated soil acidification. We find that N addition might have negative impacts on biological P uptake without affecting TDP leaching, and that the amount of TDP leaching from soil could be lower than a minimum concentration for TDP retention. Overall, we conclude that long-term N deposition does not necessarily decrease P effluxes from tropical forest ecosystems with conservative P cycling.


Datum: 01.04.2018


Net nitrogen mineralization in Alberta bog peat is insensitive to experimentally increased nitrogen deposition and time since wildfire

Abstract

Across northern Alberta, Canada, bogs experience periodic wildfire and, in the Fort McMurray region, are exposed to increasing atmospheric N deposition related to oil sands development. As the fire return interval shortens and/or growing season temperatures increase, the regional peatland CO2–C sink across northern Alberta will likely decrease, but the magnitude of the decrease could be diminished if increasing atmospheric N deposition alters N cycling in a way that stimulates post-fire successional development in bogs. We quantified net ammonification, nitrification, and dissolved organic N (DON) production in surface peat along a post-fire chronosequence of five bogs where we also experimentally manipulated N deposition (no water controls plus 0, 10, and 20 kg N ha−1 yr−1 simulated deposition, as NH4NO3). Initial KCl-extractable NH4+–N, NO3–N and DON averaged 176 ± 6, 54 ± 0.2, and 3580 ± 40 ng N cm−3, respectively, with no consistent changes as a function of time since fire and no consistent effects of experimental N addition. Net ammonification, nitrification, and DON production averaged 3.8 ± 0.3, 1.6 ± 0.2, and 14.3 ± 2.0 ng N cm−3 d−1, also with no consistent changes as a function of time since fire and no consistent effects of experimental N addition. Our hypothesis that N mineralization would be stimulated after fire because root death would create a pulse of labile soil organic C was not supported, most likely because ericaceous plant roots typically are not killed in boreal bog wildfires. The absence of any N mineralization response to experimental N addition is most likely a result of rapid immobilization of added NH4+–N and NO3–N in peat with a wide C:N ratio. In these boreal bogs, belowground N cycling is likely characterized by large DON pools that turn over relatively slowly and small DIN pools that turn over relatively rapidly. For Alberta bogs that have persisted at historically low N deposition values and begin to receive higher N deposition related to anthropogenic activities, peat N mineralization processes may be largely unaffected until the peat C:N ratio reaches a point that no longer favors immobilization of NH4+–N and NO3–N.


Datum: 01.04.2018


Two decades of tropical cyclone impacts on North Carolina’s estuarine carbon, nutrient and phytoplankton dynamics: implications for biogeochemical cycling and water quality in a stormier world

Abstract

Coastal North Carolina (USA) has experienced 35 tropical cyclones over the past 2 decades; the frequency of these events is expected to continue in the foreseeable future. Individual storms had unique and, at times, significant hydrologic, nutrient-, and carbon (C)-loading impacts on biogeochemical cycling and phytoplankton responses in a large estuarine complex, the Pamlico Sound (PS) and Neuse River Estuary (NRE). Major storms caused up to a doubling of annual nitrogen and tripling of phosphorus loading compared to non-storm years; magnitudes of loading depended on storm tracks, forward speed, and precipitation in NRE-PS watersheds. With regard to C cycling, NRE-PS was a sink for atmospheric CO2 during dry, storm-free years and a significant source of CO2 in years with at least one storm, although responses were storm-specific. Hurricane Irene (2011) mobilized large amounts of previously-accumulated terrigenous C in the watershed, mainly as dissolved organic carbon, and extreme winds rapidly released CO2 to the atmosphere. Historic flooding after Hurricanes Joaquin (2015) and Matthew (2016) provided large inputs of C from the watershed, modifying the annual C balance of NRE-PS and leading to sustained CO2 efflux for months. Storm type affected biogeochemical responses as C-enriched floodwaters enhanced air–water CO2 exchange during ‘wet’ storms, while CO2 fluxes during ‘windy’ storms were largely supported by previously-accumulated C. Nutrient loading and flushing jointly influenced spatio-temporal patterns of phytoplankton biomass and composition. These findings suggest the importance of incorporating freshwater discharge and C dynamics in nutrient management strategies for coastal ecosystems likely to experience a stormier future.


Datum: 17.03.2018


Hydrologic and biogeochemical drivers of dissolved organic carbon and nitrate uptake in a headwater stream network

Abstract

Headwater streams are foci for nutrient and energy loading from terrestrial landscapes, in situ nutrient transformations, and downstream transport. Despite the prominent role that headwater streams can have in regulating downstream water quality, the relative importance of processes that can influence nutrient uptake have not been fully compared in heterotrophic aquatic systems. To address this research need, we assessed the seasonality of dissolved organic carbon (DOC) and nitrate (NO3) uptake, compared the relative influence of hydrologic and biogeochemical drivers on observed seasonal trends in nutrient uptake, and estimated the influence of these biological transformations on watershed scale nutrient retention and export. We determined that seasonal reductions in DOC and NO3 concentrations led to decreases in the potential for the biotic community to take up nutrients, and that seasonality of DOC and NO3 uptake was consistent with the seasonal dynamics of ecosystem metabolism. We calculated that that during the post-snowmelt period (June to August), biotic retention of both dissolved organic carbon and nitrate exceeded export fluxes from this headwater catchment, highlighting the potential for biological processes to regulate downstream water quality.


Datum: 01.03.2018


Chemoattraction to dimethyl sulfide links the sulfur, iron, and carbon cycles in high-latitude oceans

Abstract

Large marine regions, including the exceptionally productive Southern Ocean, are iron-limited. As a result, there has been substantial interest in iron-fertilizing high nutrient low chlorophyll (HNLC) areas in an effort to sequester atmospheric carbon dioxide. More recently, research has shifted to quantifying the beneficial effects of iron recycling by marine biota. Marine top predators such as whales and seabirds have been examined specifically in this regard as they have high biomass, form dense aggregations, and excrete bioavailable iron in concentrations seven orders of magnitude higher than ambient seawater. Despite it being well established that marine fauna link the iron and carbon cycles, the connection of this process to the sulfur cycle has rarely been considered. The chemoattraction of specific marine fauna to algal-derived dimethyl sulfide (DMS) is key in triggering dense, multi-species foraging aggregations that induce iron recycling, augmenting carbon assimilation. The goal of this paper is twofold; first, to highlight DMS chemoattraction as a behavior that catalyzes carbon sequestration via natural iron fertilization, and second, to identify knowledge gaps that recent biogeochemical advances can address. Fostering this interdisciplinary research will enhance our understanding of global climate regulation, ecosystem services provided by marine top predators, and the biogeochemical cycles of carbon, iron, and sulfur in HNLC waters.


Datum: 01.03.2018


 


Category: Current Chemistry Research

Last update: 28.03.2018.






© 1996 - 2018 Internetchemistry














I agree!

This site uses cookies. By using this website, you agree to the use of cookies! Learn more ...